Skip to main content

Inositol Lipids and Cell Proliferation

  • Chapter
Oncogenes and Growth Control

Abstract

One problem which is central to an understanding of both cellular growth control and the mechanism of hormone action is the nature of the signal pathway and, in particular, the identity of the second messenger molecules which trigger DNA synthesis. The main components of the signal pathways by which growth factors stimulate cell growth are shown in Fig. 1. The fact that different growth factors do not all act via the same mechanism suggests that there may be qualitatively different signal pathways. At some stage these pathways merge with each other, but the points of convergence are still obscure. The importance of understanding these pathways and their transduction mechanisms is underscored by recent findings which suggest that certain oncogenes encode proteins which participate in signal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol (1,3,4,5) tetrakisphosphate following muscarinic stimulation of rat cerebral cortical slices. Biochem J 232: 211–215

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Trosko JE, Kung H-J, Bombick D, Matsumura F (1985) Potential role of the src gene product in inhibition of gap-junctional communication in NIH/3T3 cells. Proc Natl Acad Sci USA 82: 5360–5364

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi V, Porciatti F, Pasquali F, Bruni P (1985) Transformation of BALB/3T3 cells with EJ/T24/H-RAS oncogene inhibits adenylate cyclase response to α-adrenergic agonist while increases muscarinic receptor dependent hydrolysis of inositol lipids. Biochem Biophys Res Commun 132: 900–907

    Article  CAS  PubMed  Google Scholar 

  • Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826

    Article  CAS  PubMed  Google Scholar 

  • Dotto GP, Parada LF, Weinberg RA (1985) Specific growth response of ras-transformed embryo fibroblasts to tumour promotors. Nature 318: 472–475

    Article  CAS  PubMed  Google Scholar 

  • Downward J, Yarden Y, Mayes E, Scrace E, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogenes protein sequences. Nature 307: 521–527

    Article  CAS  PubMed  Google Scholar 

  • Durkin JP, Boynton AL, Whitfield JF (1981) The src gene product (pp60src) of avian sarcoma virus rapidly induces DNA synthesis and proliferation of calcium-deprived rat cells. Biochem Biophys Res Commun 103: 233–239

    Article  CAS  PubMed  Google Scholar 

  • Fleischman LF, Chahwala SB, Cantley L (1986) Ras-transformed cells: altered levels of phosphatidylinositol-4, 5-bisphosphate and catabolites. Science 231:407–410

    Article  CAS  PubMed  Google Scholar 

  • Guy GR, Gordon J, Michell RH, Brown G (1985) Synergism between diacylglycerols and calcium ionophore in the induction of human B cell proliferation mimics the inositol lipid polyphosphate breakdown signals induced by crosslinking surface immunoglobulin. Biochem Biophys Res Commun 131: 484–491

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF, ÄnggÃ¥rd EA, Letcher AJ, Downes CP (1985) Metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands. Biochem J 229: 505–511

    CAS  PubMed  Google Scholar 

  • Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphosphate path- way-demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissue. Nature 320: 631–634

    Article  CAS  PubMed  Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602

    Article  CAS  PubMed  Google Scholar 

  • Macara IG, Marinetti GV, Balduzzi PC (1984) Transforming protein of avain sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis. Proc Natl Acad Sci USA 81: 2728–2732

    Article  CAS  PubMed  Google Scholar 

  • Michell RH (1982) Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 3: 429–440

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–697

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Selinger Z, Scolnick EM, Bassin RH (1983) Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci USA 80: 5602–5606

    Article  CAS  PubMed  Google Scholar 

  • Pouysségur J, Sardet C, Franchi A, L’Allemain G, Paris S (1984) A specific mutation abolishing Na 1H antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci USA 81: 4833–4837

    Article  PubMed  Google Scholar 

  • Sherr CJ, Rettenmier CW, Sacca R, Roussel ML, Look AJ, Stanley ER (1985) The c-fms protooncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41: 665–676

    Article  CAS  PubMed  Google Scholar 

  • Sugano S, Hanafusa H (1985) Phosphatidylinositol kinase activity in virus-transformed and non-transformed cells. Mol Cell Biol 5: 2399–2404

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Erikson RL (1985) Phosphatidylinositol kinase activities in normal and Rous sarcoma virus-transformed cells. Mol Cell Biol 5: 3194–3198

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Whitman M, Cantley LC, Erikson RL (1984) Evidence that the Rous sarcoma virus-transforming gene product phosphorylated phosphatidylinositol and diacylgylcerol. Proc Natl Acad Sci USA 81: 2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Wilson DB, Connolly TM, Bross TE, Majerus PW, Sherman WR, Tyler AN, Rubin LJ, Brown JE (1985) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. J Biol Chem 260: 13496–13501

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berridge, M.J. (1986). Inositol Lipids and Cell Proliferation. In: Kahn, P., Graf, T. (eds) Oncogenes and Growth Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73325-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73325-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18760-8

  • Online ISBN: 978-3-642-73325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics