Mutational Analysis of v-erbB Oncogene Function

  • Hartmut Beug
  • Michael J. Hayman
  • Björn Vennström


The v-erbB oncogene is contained in two strains of avian erythroblastosis virus (AEV) and encodes their capacity to cause erythroleukemia and sarcomas in chickens. Recent work has revealed that the v-erbB gene product represents a truncated and mutated version of the EGF receptor (Downward et al. 1984; Ullrich et al. 1984). This finding was surprising in light of the fact that AEV in hematopoietic cell lineages selectively transforms erythroid cells, which are not known to express the epidermal growth factor (EGF) receptor. Sequence comparisons showed that v-erbB is also related to the family of oncogenes encoding tyrosine kinases (Yamamoto et al. 1983).


Mutate Epidermal Growth Factor Receptor Erythroid Cell Epidermal Growth Factor Receptor Gene erbB Gene Plasma Membrane Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins B, Beug H, Graf T (1985) Protein synthesis in differentiating normal and leukemic erythroid cells. J Cell Physiol 123:269–276CrossRefPubMedGoogle Scholar
  2. Balk SD, Gunther HS, Moisi A (1984) Morphological transformation, autonomous proliferation and colony formation by chicken heart mesenchymal cells infected with avian sarcoma, erythroblastosis and myelocytomatosis virus. Life Sci 35:1157–1171CrossRefPubMedGoogle Scholar
  3. Beug H, Hayman MJ (1984) Temperature–sensitive mutants of avian erythroblastosis virus: surface expression of the v-erbB product correlates with transformation. Cell 36:963–972CrossRefPubMedGoogle Scholar
  4. Beug H, Kahn P, Vennström B, Hayman MJ, Graf T (1985) How do retroviral oncogenes induce transformation in avian erythroid cells? Proc R Soc Lond 226:121–126CrossRefPubMedGoogle Scholar
  5. Beug H, Hayman MJ, Raines MB, Kung HJ, Vennström B (1986) RAV-1-induced erythroleukemia cells exhibit a weakly transformed phenotype in vitro and release c–erbB containing retroviruses unable to transform fibroblasts. J Virol 57:1127–1138PubMedGoogle Scholar
  6. Choi OR, Trainor C, Graf T, Beug H, Engel D (1986) A single amino acid substitution in v-erbB confers a thermolabile phenotype to ts167 AEV-transformed erythroid cells. Mol Cell Biol 6:1751–1759PubMedGoogle Scholar
  7. Debuire B, Henry C, Nenaissa M, Biserte G, Claverie JM, Saule S, Martin P, Stehelin D (1984) Sequencing the erbA gene of avian erythroblastosis virus reveals a new type of oncogene. Science 224:1456–1459CrossRefPubMedGoogle Scholar
  8. Decker SJ (1985) Phosphorylation of the erbB gene product from an avian erythroblastosis virus-transformed chick fibroblast cell line. J Biol Chem 260:2003–2006PubMedGoogle Scholar
  9. Downward J, Parker P, Waterfield MD (1984) Autophosphorylation sites on the epidermal growth factor receptor. Nature 311:483–485CrossRefPubMedGoogle Scholar
  10. Gilmore T, DeClue JE, Martin GS (1985) Protein phosphorylation at tyrosine is induced by the v-erbB gene product in vivo and in vitro. Cell 40:609–618CrossRefPubMedGoogle Scholar
  11. Graf T, Ade N, Beug H (1978) Temperature-sensitive mutant of avian erythroblastosis virus sug–gests a block of differentiation as a mechanism of leukaemogenesis. Nature 275:496–501CrossRefPubMedGoogle Scholar
  12. Graf T, Beug H, Hayman MJ (1980) Target cell specificity of defective avian leukemia viruses: hematopoietic target cells for a given virus type can be infected but not transformed by strains of a different type. Proc Natl Acad Sci USA 77:389–393CrossRefPubMedGoogle Scholar
  13. Hayman MJ, Beug H (1984) Identification of a form of the avian erythroblastosis virus erbB gene product at the cell surface. Nature 309:460–462CrossRefPubMedGoogle Scholar
  14. Hayman MJ, Kitchener G, Knight J, McMahon J, Watson R, Beug H (1986) Autophosphoryla–tion of v–erbB does not correlate with cell transformation. Virology (in press)Google Scholar
  15. Hihara H, Yamamoto H, Shimohira H, Arai K, Shimizu T (1983) Avian erythroblastosis virus isolated from chick erythroblastosis induced by lymphatic leukemia virus subgroup A. J Nat Cancer Inst 70:891–897PubMedGoogle Scholar
  16. Kahn P, Adkins B, Beug H, Graf T (1984) Src-and fps-containing avian sarcoma viruses transform chicken erythroid cells. Proc Natl Acad Sci USA 81:7122–7126CrossRefPubMedGoogle Scholar
  17. Kahn P, Frykberg L, Brady C, Stanley I, Beug H, Vennström B, Graf T (1986) v-erbA cooperates with sarcoma oncogenes in leukaemic cell transformation. Cell 45:349–356CrossRefPubMedGoogle Scholar
  18. Kris RM, Lax I, Gullick W, Waterfield MD, Ullrich A, Fridkin M, Schlessinger J (1985) Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell 40:619–625CrossRefPubMedGoogle Scholar
  19. Nilsen TW, Maroney PA, Goodwin RG, Rottman FM, Crittenden LB, Paines MA, Kung H (1985) c–erbB activation in ALV-induced erythroblastosis: novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell 41:719–726CrossRefPubMedGoogle Scholar
  20. Palmieri S, Beug H, Graf T (1982) Isolation and characterization of four new temperature-sensitive mutants of avian erythroblastosis virus (AEV). Virology 123:293–311CrossRefGoogle Scholar
  21. Privalsky ML, Bishop JM (1984) Subcellular localization of the v-erbB protein, the product of a transforming gene of avian erythroblastosis virus. Virology 135:356–368CrossRefPubMedGoogle Scholar
  22. Rothe-Meyer A, Engelbreth-Holm J (1933) Experimentelle Studien über die Beziehungen zwischen Hühnerleukose and Sarkom an der Hand eines Stammes von übertragbaren LeukoseSarkom-Kombinationen. Acta Pathol Microbiol Scand 10:380CrossRefGoogle Scholar
  23. Royer-Pokora B, Beug H, Claviez M, Winkhardt H-J, Friis R, Graf T (1978) Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses. Cell 13:751–760CrossRefPubMedGoogle Scholar
  24. Samarut J, Gazzolo L (1982) Target cells infected by avian erythroblastosis virus differentiate and become transformed. Cell 28:921–929CrossRefPubMedGoogle Scholar
  25. Schmidt JA, Beug H, Hayman MJ (1985) Effects of inhibitors of glycoprotein processing on the synthesis and activity of the erbB oncogene. EMBO J 4:105–112PubMedGoogle Scholar
  26. Schmidt JA, Marshall J, Hayman MJ, Doederlein G, Beug H (1986) Monoclonal antibodies to novel erythroid differentiation antigens reveal specific effects of oncogenes on the leukaemic cell phenotype. Leukemia Res 10:257–272CrossRefGoogle Scholar
  27. Tracy SE, Woda BA, Robinson HL (1985) Induction of angiosarcoma by a c–erbB transducing virus. J Virol 54:304–310PubMedGoogle Scholar
  28. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425CrossRefPubMedGoogle Scholar
  29. Yamamoto T, Hihara H, Nishida T, Kawai S, Toyoshima K (1983) A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34:225–232CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Hartmut Beug
  • Michael J. Hayman
  • Björn Vennström

There are no affiliations available

Personalised recommendations