Skip to main content

Physiological Signalling Across Cell Membranes and Cooperative Influences of Extremely Low Frequency Electromagnetic Fields

  • Chapter
Biological Coherence and Response to External Stimuli

Abstract

From the first applications of the light microscope in biology more than 300 years ago, there has been a progressive development of the concept of a limiting membrane that defines the physical boundaries of a living organism, whether this be a bacterium, or a single-celled protozoan leading an independent existence, or a cell in the tissues of higher organisms. From initial concepts of this membrane as merely an enclosing device, emphasis has shifted to its role as a window through which the cell as a unitary biological element can sense its chemical and electrical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achimowicz J, Cader A, Pannert L, WojcikE (1977) Quantum cooperative mechanism of enzymatic activity. Phys Lett 60A: 383–384

    Google Scholar 

  • Adey WR (1975) Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Schmitt FO, Schneider DM, Crothers DM (eds) Functional linkage biomolecular systems. Raven, New York, pp 325–342

    Google Scholar 

  • Adey WR (1977) Models of membranes of cerebral cells as substrates for information storage. Bio Systems 8: 163–178

    Article  Google Scholar 

  • Adey WR (1981a) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61: 435–514

    Google Scholar 

  • Adey WR (1981b) Ionic nonequilibrium phenomena in tissue interactions with electromagnetic fields. In: Illinger KH (ed) Biological effects of nonionizing radiation. Am Chem Soc., Washington, DC., pp 271–297

    Chapter  Google Scholar 

  • Adey WR (1983) Molecular aspects of cell membranes as substrates for interactions with electro-magnetic fields. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, pp 201–211

    Google Scholar 

  • Adey WR (1984) Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 3–22

    Chapter  Google Scholar 

  • Adey WR (1986) The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems. Bioelectrochem Bioenerg 15: 447–456

    Article  Google Scholar 

  • Adey WR (1987) Cell membranes, the electromagnetic environment and cancer promotion. Neuro- chem Res (in press)

    Google Scholar 

  • Adey WR, Lawrence AF (eds) (1984) Nonlinear electrodynamics in biological systems. Plenum, New York

    Google Scholar 

  • Adey WR, Bawin SM, Lawrence AF (1982) Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 3: 295–307

    Article  Google Scholar 

  • Aswad D, Koshland DE (1974) Role of methionine in Chemotaxis. J Bacteriol 118: 640–645

    Google Scholar 

  • Balcer-Kubiczek EK, Harrison GH (1985) Evidence for microwave carcinogenesis in vitro. Carcinogenesis 6: 859–864

    Article  Google Scholar 

  • Bass L, Moore WJ (1968) A model of nervous excitation based on the Wien dissociation effect. In: Rich A, Davidson CM (eds) Structural chemistry and molecular biology. Freeman, San Francisco, pp 356–368

    Google Scholar 

  • Bassett CAL, Mitchell N, Gaston SR (1982) Pulsing electromagnetic fields in ununited fractures and failed arthrodeses. J Am Med Assoc 247: 623–627

    Article  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA 73:1999–2003 Bawin SM, Kaczmarek LK, Adey WR (1975) Effects of modulated VHF fields on the central nervous system. NY Acad Sci 247:74–91 Bawin SM, Adey WR, Sabbot IM (1978a) Ionic factors in release of 45Ca2+ from chick cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 75: 6314–6318

    Article  ADS  Google Scholar 

  • Bawin SM, Sheppard AR, Adey WR (1978b) Possible mechanisms of weak electromagnetic field

    Google Scholar 

  • coupling in brain tissue. Bioelectrochem Bioenergetics 5:67–76 Bhaumik D, Bhaumik K, Dutta-Roy B (1976) On the possibility of Bose condensation in the excitation of coherent modes in biological systems. Phys Lett 56A: 145–148

    Google Scholar 

  • Blackman CF, Elder JA, Well CM, Benane SG, Eichinger DC, House DE (1979) Induction of calcium ion efflux from brain tissue by ratio frequency radiation. Radio Sci 14: 93–98

    Article  ADS  Google Scholar 

  • Blackman CF, Benane SG, House DE, Joines WT (1985a) Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6: 1–11

    Article  Google Scholar 

  • Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT (1985b) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6: 327–338

    Article  Google Scholar 

  • Blank M (1972) Cooperative effects in membrane reactions. J Colloid Interface Sci 41: 97–104

    Article  Google Scholar 

  • Blank M (1976) Hemoglobin reactions as interfacial phenomena. J Electrochem Soc 123: 1653–1656

    Article  Google Scholar 

  • Blank M (1986) Electrical double layers in membrane transport and nerve excitation. Bioelectrochemical Soc, First Int School, Pleven, Bulgaria, Proceedings, p 26

    Google Scholar 

  • Blinowska KJ, Lech W, Wittlin A (1985) Cell membrane as a possible site of Fröhlich’s coherent oscillations. Phys Lett 109A: 124–126

    Article  Google Scholar 

  • Byus CV, Lundak RL, Fletcher RM, Sadey WR (1984) Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 5: 34–51

    Article  Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1987a) Microwaves act at cell membranes alone or in synergy with cancer-promoting phorbol esters to enhance ornithine decarboxylase activity. ( Submitted Cancer Res )

    Google Scholar 

  • Byus CV, Pieper S, Adey WR (1987b) The effect of environmentally significant low-energy 60 Hz electromagnetic fields upon the cancer-related enzyme ornithine decarboxylase. Carcigonesis 8 (10)

    Google Scholar 

  • Carpenter GA, Grossberg S (1983) Adaptation and transmitter gating in vertebrate photoreceptors. J Theor Neurobiol 1: 1–42

    Google Scholar 

  • Davydov AS (1979) Solitons in molecular systems. Physica Scripta 20: 387–394

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dutta SK, Subramoniam A, Ghosh B, Parshad R (1984) Microwave radiation-induced calcium efflux from brain tissue, in vitro. Bioelectromagnetics 5: 71–78

    Article  Google Scholar 

  • Edelman GM, Yahara I, Wang JL (1973) Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci USA 70: 1442–1446

    Article  ADS  Google Scholar 

  • Ehrlich YH, Davis TB, Bock DE, Komecki E, Lenox RH (1986) Ecto-protein kinase activity on the external surface of neural cells. Nature 320: 67–69

    Article  ADS  Google Scholar 

  • Elul R (1966) Applications of non-uniform electric fields. Part I. Electrophoretic evaluation of absorption. Faraday Soc. Trans, pp 3483–3492

    Google Scholar 

  • Elul R (1967) Fixed charge in the cell membrane. J Physiol 189: 351–365

    Google Scholar 

  • Engel J, Schwarz G (1970) Cooperative conformational transitions of linear biopolymers. Angew Chem Int Ed 9: 389–400

    Article  Google Scholar 

  • Fitzsimmons RJ, Farley J, Adey WR, Baylink DJ (1986) Embryonic bone matrix formation is increased after exposure to a low-amplitude capacitively coupled electric field, in vitro. Biochim Biophys Acta 882: 51–56

    Article  Google Scholar 

  • Fletcher WH, Byus CV, Walsh DA (1987) Receptor mediated action without receptor occupancy: a function for cell-cell communication in ovarian follicles. In: Mahesh V (ed) Regulation of ovarian and testicular function. Plenum, New York

    Google Scholar 

  • Fröhlich H (1968) Long-range coherence and energy storage in biological systems. Int J Quantum Chem 2: 641–649

    Article  ADS  Google Scholar 

  • Fröhlich H (1972) Selective long range dispersion focres between large systems. Phys Lett 29A: 153–154

    Article  Google Scholar 

  • Fröhlich H (1975) The extraordinary dielectric properties of biological materials and the action of enzymes. Proc Natl Acad 72: 4211–4215

    Article  ADS  Google Scholar 

  • Fröhlich H (1977) Possibilities of long- and short-range electric interactions of biological systems. Neurosci Res Program Bull 15: 67–72

    Google Scholar 

  • Fröhlich H (1980) The biological effects of microwaves and related questions. Adv Electronics Electron Phys 53: 85–152

    Article  Google Scholar 

  • Fröhlich H (1986a) Coherent excitation in active biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 241–261

    Chapter  Google Scholar 

  • Fröhlich H (1986b) Coherence and the action of enzymes. In: Welch GR (ed) The fluctuating enzyme. Wiley, New York, pp 421–449

    Google Scholar 

  • Gavalas-Medici R, Day-Magdaleno SR (1976) Extremely low-frequency, weak electric fields affect schedule-controlled behavior of monkeys. Nature 261: 256–258

    Article  ADS  Google Scholar 

  • Gmitro JL, Scriven LE (1966) A physicochemical basis for pattern and rhythm. In: Warren KB (ed) Intracellular transport. Academic Press, New York, pp 221–255

    Google Scholar 

  • Goodman R, Henderson A (1986) Sine waves enhance cellular transcription. Bioelectromagnetics 7: 23–29

    Article  Google Scholar 

  • Grossberg S (1983) Neural substrates of binocular form perception: filtering, matching, diffusion and resonance. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, pp 274–298

    Google Scholar 

  • Hyman JM, McLaughlin DW, Scott AC (1981) On Davydov’s alpha-helix soliton. Physica D30: 23–44

    Google Scholar 

  • Jolley WB, Hinshaw DB, Knierim K, Hinshaw DB (1983) Electromagnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics 4: 103–107

    Article  Google Scholar 

  • Kaczmarek LK (1976) Frequency sensitive biochemical reactions. Biophys Chem 4: 249–252

    Article  Google Scholar 

  • Kaczmarek LK, Adey WR (1973) The efflux of 45Ca2+ and 3H-gamma-aminobutyric acid from cat cerebral cortex. Brain Res 63:331–342 Kaczmarek LK, Adey WR (1974) Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Res 66: 537–540

    Article  Google Scholar 

  • Kaiser F (1984) Entrainment-quasiperiodicity-chaos-collapse: bifurcation routes of externally driven self-sustained oscillating systems. In: Adey WR, Lawrence AF (eds) Nonlinear electro-dynamics in biological systems. Plenum, New York, pp 393–412

    Chapter  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55: 371–383

    Google Scholar 

  • Katchalsky A (1974) Concepts of dynamic patterns. Early history and philosophy. Neurosci Res Program Bull 12: 30–36

    Google Scholar 

  • Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge MA

    Google Scholar 

  • Katchalsky A, Rowland V, Blumenthal R (eds) (1974) Dynamic patterns of brain cell assemblies. Neurosci Res Program Bull 12: 1–195

    Google Scholar 

  • Keeler JD, Farmer JD (1986) Robust space-time intermittency and 1/f noise. Physica D23: 413–446

    MathSciNet  Google Scholar 

  • Koshland DE (1975) Transductive coupling in chemotactic processes: chemoreceptor-flagellar coupling in bacteria. In: Schmitt FO, Schneider DM, Schneider DM (eds) Functional linkage in biomolecular systems. Raven, New York, pp 273–279

    Google Scholar 

  • Lawrence AF, Adey WR (1982) Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurol Res 4: 115–153

    Google Scholar 

  • Liboff AR (1985) Cyclotron resonance in membrane transport. In: Chiabrera A, Nicolini C, Schwan HP (eds) Interactions between electromagnetic fields and cells. Plenum, New York, pp 281–296

    Google Scholar 

  • Lin-Liu S, Adey WR (1982) Low frequency, amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 3: 309–322

    Article  Google Scholar 

  • Lin-Liu S, Adey WR,Poo M-M (1984) Migration of cell surface concanavalin A receptors in pulsed electric fields. Biophys J 45: 1211–1217

    Google Scholar 

  • Luben RA, Cain CD (1984) Use of bone cell hormone responses to investigate bioelectromagnetic effects on membranes in vitro. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 23–33

    Chapter  Google Scholar 

  • Luben RA, Cain CD, Chen M-Y, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc Natl Acad Sci USA 79: 4180–4183

    Article  ADS  Google Scholar 

  • Lyle DB, Schechter P, Adey WR, Lundak RL (1983) Suppression of T lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4: 281–292

    Article  Google Scholar 

  • Lyle DB, Ayotte RD, Sheppard AR, Adey WR (1987) Suppression of T lymphocyte cytotoxicity following exposure to 60 Hz sinusoidal electric fields. ( Submitted) Bioelectromagnetics

    Google Scholar 

  • Maddox J (1986) Physicists about the hijack DNA? Nature 324: 11

    Article  ADS  Google Scholar 

  • Moolenaar WH, Aerts RJ,Tertoolen LGJ, DeLast SW (1986) The epidermal growth factor-induced calcium signal in A431 cells. J Biol Chem 261: 279 - 285

    Google Scholar 

  • Neumann E, Katchalsky A (1972) Long-lived conformation changes induced by electric pulses in biopolymers. Proc Natl Acad Sci USA 69: 993–997

    Article  ADS  Google Scholar 

  • Nicolis JS (1983) The role of chaos in reliable information processing. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer, Berlin Heidelberg New York, pp 330–344

    Google Scholar 

  • Nicolis JS, Galanos G, Protonotarios EN (1973) A frequency entrainment model with relevance to systems displaying adaptive behaviour. Int J Control 18: 1009–1027

    Article  MATH  Google Scholar 

  • Nicolis JS, Protonotarios E, Lianos E (1974) The role of noise in “self-organizing” systems. Univ of Patras, Greece, Dept Electrical Eng, Technical Report CSB-1, 55 pp

    Google Scholar 

  • Nishizuka Y (1983) Calcium, phospholipid and transmembrane signalling. Philos Trans R Soc Lond B302: 101–112

    Article  ADS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308: 693–696

    Article  ADS  Google Scholar 

  • Othmer HG, Scriven LE (1969) Interactions of reaction and diffusion in open systems. Ind Eng Chem 8: 302–313

    Google Scholar 

  • Othmer HG, Scriven LE (1971) Instability and dynamic pattern in cellular networks. J Theor Biol 32: 507–537

    Article  Google Scholar 

  • Othmer HG, Scriven LE (1974) Nonlinear aspects of dynamic pattern in cellular networks. J Theor Biol 43: 83–112

    Article  Google Scholar 

  • Pasti G, Lacal J-C, Warren BS, Aaronson SA, Blumberg PM (1986) Loss of mouse fibroblast response to phorbol esters restored by microinjected protein kinase C. Nature 324: 375–377

    Article  ADS  Google Scholar 

  • Polk C (1984) Time-varying magnetic fields and DNA synthesis: magnitude of forces due to magnetic fields on surface-bound counterions. Proceedings Bioelectromagnetics Soc, 6th Annual Meeting, p 77 (abstract)

    Google Scholar 

  • Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter M (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325: 393–397

    Article  Google Scholar 

  • Rayleigh L (1916) On convective currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos Mag 32: 529–546

    Google Scholar 

  • Riedel H, Schlessinger J, Ullrich A (1986) A chimeric, ligand binding v-erbB/EGF receptor retains transforming potential. Science 236: 197–200

    Article  ADS  Google Scholar 

  • Rodbell M, Lin MC, Salomon Y (1974) Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J Biol Chem 249: 59–65

    Google Scholar 

  • Schmitt FO, Schneider DM,Crothers DM (eds) (1975) Functional linkage in biomolecular systems. Raven, New York

    Google Scholar 

  • Schwarz G (1975) Sharpness and kinetics of cooperative transitions. In: Schmitt FO, Schneider DM, Crothers DM (eds) Functional linkage in biomolecular systems. Raven, New York, pp 32–35

    Google Scholar 

  • Schwarz G, Balthasar W (1970) Cooperative binding of linear biopolymers. 3. Thermodynamic and kinetic analysis of the acridine orange-poly (L-glutamic acid) system. Eur J Biochem 12: 461–467

    Article  Google Scholar 

  • Schwarz G, Seelig J (1968) Kinetic properties and electric field effect of the helix-coil transition of poly (gamma-benzyl L-glutamate) determined from dielectric relaxation measurements. Biopolymers 6: 1263–1277

    Article  Google Scholar 

  • Schwarz G, Klose S, Balthasar W (1970) Cooperative binding to linear biopolymers. 2. Thermodynamic analysis of the proflavine-poly (L-glutamic acid) system. Eur J Biochem 12: 454–460

    Article  Google Scholar 

  • Scott AC (1981) The laser-Raman spectrum of a Davydov soliton. Phys Lett 62A. 60–62

    Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biol Physiol 76A: 683–692

    Article  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol 159: 619–625

    Article  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Article  ADS  Google Scholar 

  • Takahashi K, Kaneko I, Date M,FukadaE (1986) Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 42: 185–186

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B237: 37–72

    Article  ADS  Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1985) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 428–421

    Google Scholar 

  • Van der Kloot WG, Cohen I (1979) Membrane surface potential changes may alter drug interactions: an example, acetyl choline and curare. Science 203: 1351–1352

    Article  ADS  Google Scholar 

  • Welker HA, Semm P, Willig RP, Wiltschko W, Vollrath L (1983) Effects on an artificial magnetic field on serotonin-N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–431

    Article  Google Scholar 

  • Wever R (1975) The circadian multi-oscillatory system of man. Int J Chronobiol 3: 19 55

    Google Scholar 

  • Wyman J (1948) Heme proteins. Adv Protein Chem 4: 407–531

    Article  Google Scholar 

  • Wyman J, Allen DW (1951) The problem of the heme interactions in hemoglobin and the basis of the Bohr effect. J Polymer Sci 7: 491–518

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adey, W.R. (1988). Physiological Signalling Across Cell Membranes and Cooperative Influences of Extremely Low Frequency Electromagnetic Fields. In: Fröhlich, H. (eds) Biological Coherence and Response to External Stimuli. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73309-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73309-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73311-6

  • Online ISBN: 978-3-642-73309-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics