Advertisement

Resonant Cellular Effects of Low Intensity Microwaves

  • W. Grundler
  • U. Jentzsch
  • F. Keilmann
  • V. Putterlik

Abstract

Biological effects of low intensity microwaves have been the subject of a great number of studies and many different reactions were reported ranging from molecular to animal level. The acceptance level is low, however, due to difficulties both in reproducing the effects by others and in demonstrating their real athermal nature. In some cases great efforts were put into repeating athermal experiments, without clear results. In these studies the interpretation of data assumes a statistical behaviour which possibly is not adequate to the biological system (Kaiser 1984). These problems will probably remain as long as the mechanisms of these subtle effects are unknown. It seems worth thinking of new concepts for experimental investigations in athermal bioelectromagnetics. To focus on fundamental mechanisms, experiments must be oriented strongly by theoretical concepts rather than by simply investigating, for instance, biological reactions induced by a fixed frequency.

Keywords

Yeast Cell Microwave Radiation Normalize Growth Rate Specific Absorption Rate Cell Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berteaud AJ, Dardalhon M, Rebeyrotte N, Averbeck D (1975) Action d’un rayonnement électromagnétique à longueur d’onde millimétrique sur la croissance bactérienne. CR Acad Sci (D) (Paris) 281: 843–846Google Scholar
  2. Blackman CF, Benane SG, Weil CM, Ali JS (1975) Effects of nonionizing electromagnetic radiation on single cell biologic systems. Ann NY Acad Sci 247: 352–366ADSCrossRefGoogle Scholar
  3. Dardalhon M, Averbeck D, Berteaud AJ (1981) Studies on possible genetic effects of microwaves in procaryotic and eucaryotic cells. Radiat Environ Biophys 20: 37–51CrossRefGoogle Scholar
  4. Dardalhon M, Averbeck D, Berteaud AJ, Rayary V (1986) Action of 17 GHz microwaves combined with ultraviolet or x-irradiation on Saccharomyces cerevisiae. Thesis ( D.M. ), Univ Paris, pp 132–156Google Scholar
  5. Devyatkov ND (ed) (1981) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow (in Russian)Google Scholar
  6. Devyatkov ND (ed) (1983) Nonthermal effects of millimeter wave irradiation on biological objects. Acad Sci USSR, Inst Radiotech Electrotech Moscow (in Russian)Google Scholar
  7. Devyatkov ND, Sevastyanova LA, Vilenskaya RL,Smolyanskaya AZ, Kondrateva YF,Chistyakova EN, Shmakova IF, Ivanova NB, Treskunov AA, Manoilov SE, Zalyubovskaya VA, Koselev RJ, Gaiduk VI, Khurgin YI, Kudryashova VA (1974) Sov Phys-Usp 16, 4: 568–579ADSCrossRefGoogle Scholar
  8. Dutta SK, Nelson WH, Blackman CF, Brusick DJ (1979) Lack of microbial genetic response to 2.45 GHz (CW) and 8.5 to 9.6 GHz pulsed microwaves. J Microwave Power 14: 275–280Google Scholar
  9. Fröhlich H (1968) Long range coherence and energy storage in biological systems. Int J Quantum Chem 2: 641ADSCrossRefGoogle Scholar
  10. Fröhlich H (1970) Long range coherence and the action of enzymes. Nature 228: 1093ADSCrossRefGoogle Scholar
  11. Fröhlich H (1980) In: Marton L (ed) Advances in electronics and electron physics. Academic Press, New York, 53: 85–152Google Scholar
  12. Fröhlich H (1986) Coherent excitation in active biological systems. In: Gutmann F, Keyzer H (eds) Modern bioelectrochemistry. Plenum, New York, pp 241–261CrossRefGoogle Scholar
  13. Fröhlich H, Kremer F (1983) Coherent excitations in biological systems. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  14. Furia L, Hill DW, Gandhi OP (1986) Effect of millimeter-wave irradiation on growth of Caccharomyces cerevisiae. IEEE Trans Biomed Eng Vol BME-33, 11: 993–999CrossRefGoogle Scholar
  15. Grundler W (1983) Biological effects of RF and MW energy at molecular and cellular level. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum, New York, pp 299–318Google Scholar
  16. Grundler W (1985) Frequency-dependent biological effects of low intensity microwaves. In: Chiabrera A, Nicolini C, Schwan HP (eds) Interactions between electromagnetic fields and cells. Plenum, New York, pp 459–481Google Scholar
  17. Grundler W, Abmayr W (1983) Differential inactivation analysis of diploid yeast exposed to radiation of various LET. Res 94: 464–479Google Scholar
  18. Grundler W, Keilmann F (1978) Nonthermal effects of millimeter microwaves on yeast growth. Z Naturforsch 33c: 15–22Google Scholar
  19. Grundler W, Keilmann F (1983) Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves. Phys Rev Lett 51, No 13: 1214–1216ADSCrossRefGoogle Scholar
  20. Grundier W, Keilmann F, Fröhlich H (1977) Resonant growth rate response of yeast cells irradiated by weak microwaves. Phys Lett 62A: 463CrossRefGoogle Scholar
  21. Grundler W, Keilmann F, Putterlik V, Santo L, Strube D, Zimmermann I (1983) Nonthermal resonant effects of 42 GHz microwaves on the growth of yeast cultures. In: Fröhlich H, Kremer F (eds) Coherent excitations in biological systems. Springer, Berlin Heidelberg New York, pp 21–37CrossRefGoogle Scholar
  22. Hamnerius Y, Rasmuson A, Rasmuson B (1985) Biological effects of high-frequency electromagnetic fields on Salmonella typhimurium and Drosophila melanogaster. Bioelectromagnetics 6: 405–414CrossRefGoogle Scholar
  23. Huang AT, Engle ME, Elder JA, Kinn JB, Ward TR (1977) The effect of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci 12: 173–177ADSCrossRefGoogle Scholar
  24. Kaiser F (1984) Entrainment-quasiperiodicity-chaos-collapse, bifurcation routes of externally driven self-sustained oscillating systems. In: Adey WR, Lawrence AF (eds) Nonlinear electrodynamics in biological systems. Plenum, New York, pp 393–412CrossRefGoogle Scholar
  25. Keilmann F (1983) Experimental RF and MW resonant nonthermal effects. In: Grandolfo M, Michaelson SM, Rindi A (eds) Biological effects and dosimetry of nonionizing radiation. Plenum, New York, pp 283–297Google Scholar
  26. Keilmann F (1985) Biologische Resonanzwirkungen von Mikrowellen. Physik in unserer Zeit 16: 33ADSCrossRefGoogle Scholar
  27. Keilmann F (1986) Triplet-selective chemistry: a possible cause of biological microwave sensitivity. Z Naturforsch 41c: 795–798Google Scholar
  28. Laskowski W (1960) Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades. Z Naturforsch Teil B 15: 495Google Scholar
  29. McRee DI, Macnichols G, Livingston GK (1981) Incidence of sister chromatic exchange in bone marrow cells of the mouse following microwave exposure. Radiat Res 85: 340–348CrossRefGoogle Scholar
  30. Pickard WF (1986) Criteria for the design or selection of experiments in bioelectromagnetics. Bioelectromagnetics Society Newsletter Jan., Febr., MarchGoogle Scholar
  31. Sevastyanova LA (1981) Specific influence of millimeter waves on biological objects. In: Devyatkov ND (ed) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow, pp 86–113 (in Russian)Google Scholar
  32. Sevastyanova LA, Vilenskaya RL (1974) A study of the effects of millimeter-band microwaves on the bone marrow of mice. Sov Phys Usp (Engl Trans!) 16: 570ADSCrossRefGoogle Scholar
  33. Sevastyanova LA, Gorodnina ES, Zubenkova MB, Golant TB, Rebrova VL, Iskrickij VL (1983) Resonant influence of millimeter waves on biological systems. In: Devyathov ND (ed) Nonthermal effects of millimeter wave irradiation on biological objects. Acad Sci USSR, Inst Radio- tech Electrotech Moscow, pp 34–47 (in Russian)Google Scholar
  34. Smolyanskaya AZ (1981) Influence of electromagnetic waves on microorganisms. In: Devyatkov ND (ed) Nonthermal effects of millimeter wave irradiation. Acad Sci USSR, Inst Radiotech Electrotech Moscow, pp 132–146 (in Russian)Google Scholar
  35. Webb SJ, Dodds DD (1968) Inhibition of bacterial cell growth by 136 gc microwaves. Nature (Lond) 218: 374–375ADSCrossRefGoogle Scholar
  36. Webb SJ, Booth AD (1969) Absorption of microwaves by microorganisms. Nature (Lond) 222: 1199ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Grundler
    • 1
  • U. Jentzsch
    • 1
  • F. Keilmann
    • 2
  • V. Putterlik
    • 1
  1. 1.Gesellschaft für Strahlen- und Umweltforschung mbHNeuherbergGermany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany

Personalised recommendations