Skip to main content
  • 86 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Allgemeine Grundlagen der Physikalischen Chemie

  • Denbigh, K.: The principles of chemical equilibrium, 3rd edn. Cambridge University Press, Cambridge, 1971.

    Google Scholar 

  • Kortüm, G.: Einführung in die chemische Thermodynamik, Verlag Chemie GmbH, Weinheim/Bergstraße, 1966.

    Google Scholar 

  • Kortüm, G.: Lehrbuch der Elektrochemie, Verlag Chemie GmbH, Weinheim/Bergstraße, 1972.

    Google Scholar 

  • Moore, W.: Physical chemistry, Longmans, London, 1962.

    Google Scholar 

  • Swallin, R.A.: Thermodynamics of solids, Wiley, New York, 1962.

    Google Scholar 

Anwendung der Physikalischen Chemie auf dem Gebiet der Mineralogie bzw.Petrologie

  • Barth, T.F.W.: Theoretical petrology, 2nd edn., Wiley, New York, 1962.

    Google Scholar 

  • Broecker, W.S. und Oversby, V.M.: Chemical equilibria in the earth. McGraw–Hill, New York, 1971.

    Google Scholar 

  • Charmichael, I.S.E., Turner, F.J. und Verhoogen, J.: Igneous petrology, McGraw–Hill, New York, 1974.

    Google Scholar 

  • Ehlers, E.G.: The interpretation of geological phasediagrams, Freeman and Company, San Francisco, 1972.

    Google Scholar 

  • Ernst, W.G.: Petrologic phase equilibria, Freeman and Company, San Francisco, 1976.

    Google Scholar 

  • Fraser, D.G.: Thermodynamics in geology, D. Riedel Publishing Company, Dodrecht, 1976.

    Google Scholar 

  • Froese, E.: Application of thermodynamics in metamorphic petrology, Geological Survey of Canada, Paper 75–43, 1976.

    Google Scholar 

  • Fyfe, W.S., Price, N.J. and Thompson, A.B.: Developments in geochemistry 1, Fluids in the earth’s crust, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1978.

    Google Scholar 

  • Garrels, R.M. und Christ, C.L.: Solution, minerals, and equilibria, Harper and Row Publishers, New York, 1965.

    Google Scholar 

  • Greenwood H.J. (ed): Short course in application of thermodynamics to petrology and ore deposits, MSA Canada, Evergreen Press, 1978.

    Google Scholar 

  • Kern, R. und Weisbrod, A.: Thermodynamics for geologists, Freeman and Cooper, San Francisco, 1967.

    Google Scholar 

  • Masing, G.: Ternary systems, introduction to the theory of three component system, Dover Publications, New York, 1960.

    Google Scholar 

  • Mcdelov–Petrosjan: Thermodynamik der Silikate, VEB Verlag für Bauwesen, Berlin, 1965.

    Google Scholar 

  • Meyer, K. Physikalisch–chemische Kristallographie, VEB Verlag für Grundstoffindustrie, Leipzig, 1968.

    Google Scholar 

  • Mueller, R.F. und Saxena, S.K.: Chemical petrology, Springer Verlag, New York, 1977.

    Book  Google Scholar 

  • Newton, R.C., Navrotsky, A. und Wood, B.J. (eds): Thermodynamics of minerals and melts. Advances in physical geochemistry, vol. 1, Springer Verlag, New York, 1981.

    Google Scholar 

  • Petzold, A. und Hinz, W.: Silikatchemie, Einführung in die Grundlagen, Enke–Verlag, Stuttgart, 1979.

    Google Scholar 

  • Powell, R.: Equilibrium thermodynamics in petrology. An introduction, Harper and Row Publishers, London, 1978.

    Google Scholar 

  • Predel, B.: Heterogene Gleichgewichte, Steinkopff Verlag, Darmstadt, 1982.

    Google Scholar 

  • Saxena, S.K.: Thermodynamics of rock–forming crystalline solutions, Springer Verlag, New York, 1973.

    Google Scholar 

  • Saxena, S.K. (ed) Kinetics and equilibrium in mineral reactions, Advances in physical geochemistry, Springer Verlag, New York, 1983.

    Google Scholar 

  • Schmalzried, H. und Navrotsky, A.: Festkörperthermodynamik, Chemie des festen Zustandes, Verlag Chemie GmbH. Weinheim/Bergstraße, 1975.

    Google Scholar 

  • Turner, F.J. und Verhoogen, J.: Igneous and metamorphic petrology, 2nd edn. McGraw–Hill, New York, 1960.

    Google Scholar 

  • Wood, B.J. und Fraser, D.G.: Elementary thermodynamics for geologists, Oxford University Press, 1976.

    Google Scholar 

Spezielle Literatur

  • Akimoto, S., Fujisawa, H., und Katsura, T. (1965): The olivine–spinet transition in Fe2SIO4 and NI2SiO4. J. Geophys. Res., 70, 1969–1977.

    Article  Google Scholar 

  • Althaus, E. (1969): Das System Al2O3 – SiO2 – H2O. Experimentelle Untersuchungen und Folgerungen für die Petrogenese der metamorphen Gesteine. N. Jb. Miner. Abh., 111, 111–161.

    Google Scholar 

  • Anderson, P.A.M., Newton, R.C. und Kleppa, O.J. (1977): The enthalpy change of the andalusite–sillimanite reaction and the AI2SiO5 diagram. Am. J. Sci., 277, 585–593.

    Article  Google Scholar 

  • Babushka, V., Fiala, J., Kumuzawa, M. und Ohno, I. (1978): Elastic properties of garnet solid–solution series. Phys. Earth Planet. Inter., 16, 157–176.

    Article  Google Scholar 

  • Berman, R.G. und Brown, T.H. (1984): A thermodynamic model for multicomponent melts, with application to the system CaO–AI2O3–SiO2• Geochim. Cosmochim. Acta, 48, 661–678.

    Article  Google Scholar 

  • Besancon, J.R. (1981): Rate of cation disordering in orthopyroxenes. Am. Mineral., 66, 965–973.

    Google Scholar 

  • Birch, F. (1966): Compressibility: elastic constants, in Clark, S.P.Jr (ed), Handbook of physical constants, Geol. Soc. Am., New York, pp 97–173.

    Google Scholar 

  • Bottinga, Y., Weil, D.F. und Richet, P. (1981): Thermodynamic modeling of silicate melts, in Newton, R.C., Navrotsky, A. und Wood, B.J. (eds.), Advances in physical geochemistry, vol 1, Thermodynamics of minerals and melts, Springer Verlag, New York, pp 207–245.

    Google Scholar 

  • Boyd, F.R. und England, J.L. (1963): Effects of pressure on the melting points of diopside, CaMgSi2O6, and albite, NaAISi3O8, in the range up to 50 kilobars. J. Geophys. Res., 68, 311–323.

    Article  Google Scholar 

  • Boyd, F.R., England, J.L. und Davis, B.T.C. (1964): Effects of pressure on melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res., 69, 2101–2109.

    Article  Google Scholar 

  • Buddington, A.F. und Lindsley, D.H. (1964): Iron–titanium oxide minerals and synthetic equivalents. J. Petrol., 5, 310 –. 357.

    Google Scholar 

  • Burnham, C.W., Holloway, J.R. und Davis, N.F. (1969): Thermodynamic properties of water to 1000°C and 10,000 bars. Geol. Soc. Am. Spec. Paper, 132, 1–96.

    Google Scholar 

  • Cahn, J.W. (1962): Coherent fluctuations and nucleation in isotropic solids. Acta Met., 10, 907–913.

    Article  Google Scholar 

  • Carlson, H.C. und Colburn, A.P. (1947): Vapor–liquid equilibria of nonideal solutions. Utilization of theoretical methods to extended data. Ind. Eng. Chem., 34, 581–589.

    Article  Google Scholar 

  • Carmichael, D.M. (1977): Chemical equilibria involving pure crystalline compounds, in Greenwood, H.J. (ed), Short course in application of thermodynamics to petrology and ore deposits. Mineral Assoc. Canada, Evergreen Press, pp 47–65.

    Google Scholar 

  • Cemic, L. (1983): Chemische Aktivitäten in mineralogischen Systemen: Theorie und ihre Anwendung auf das System ZnS–FeS. Fortschr. Miner., 61, 169–191.

    Google Scholar 

  • Charlu, T.V., Newton, R.C. und Kleppa, O.J. (1975): Enthalpies of formation at 970K of compounds in the system MgO–AI2O3–Si02 from high temperature solution calorimetry. Geochim. Cosmochim. Acta, 39, 1487–1497.

    Article  Google Scholar 

  • Charlu, T.V., Newton, R.C. und Kleppa, O.J. (1978): Enthalpy of formation of some lime silicates by high temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim. Cosmochim. Acta. 42, 367–375.

    Article  Google Scholar 

  • Chatterjee, N.D. (1972): The upper stability of paragonite. Contrib. Mineral. Petrol., 34, 288–303.

    Article  Google Scholar 

  • Chatterjee, N.D. (1973): Low–temperature compatibility relations of the assemblage quartz–paragonite and the thermodynamic status of the phase rectorite. Contrib. Mineral. Petrol., 42, 259–271.

    Article  Google Scholar 

  • Chatterjee, N.D. and Froese, E. (1975): A thermodynamic study of pseudobinary join muscovite–paragonite in the system KAISI3O8–NaAISI3O8 Al2O3–a Si02–H2O. Am. Mineral., 60, 985–993.

    Google Scholar 

  • Cressey, G., Schmid, R. und Wood, B.J. (1978): Thermodynamic properties of almandine–grossular garnet solid solutions. Contrib. Mineral. Petrol., 67, 397–404.

    Article  Google Scholar 

  • Davis, B.T.C. und Boyd, F.R. (1966): The join Mg2SI2O6–CaMgSI2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites. J. Geophys. Res. 71, 3567–3576.

    Google Scholar 

  • Day, H.W. und Kumin, H.J. (1980): Thermodynamic analysis of the aluminium silicate triple point. Am. J. Sci., 280, 265–287.

    Article  Google Scholar 

  • Decker, D.L. (1966): Equation of state of sodium chloride. J. Appl. Phys., 37, 5012–5015.

    Article  Google Scholar 

  • Decker, D.L. (1971): High–Pressure equation of state for NaCI, KCI and CsCl. J. Appl. Phys., 42, 3239–3244.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A. und Zusman, J. (1963): Rock–forming minerals. Wiley, New York.

    Google Scholar 

  • Froese, E. und Gunter, A.E. (1976): A note on the pyrrhotite sulfur vapor equilibrium. Econ. Geol., 71, 1589–1594.

    Article  Google Scholar 

  • Ganguly, J. (1973): Activity–composition relation of jadeite in omphacite pyroxene: theoretical deductions. Eartli Planet. Sci. Letters, 19, 145–153.

    Google Scholar 

  • Ganguly, J. (1976): The energetics of natural garnet solid solutions. II mixing of the calcium silicate end–members. Contrib. Mineral. Petrol., 55, 81–90.

    Article  Google Scholar 

  • Gasparik, T. (1984): Two–pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Mineral. Petrol., 87, 87–97.

    Article  Google Scholar 

  • Gent, E.D. (1976): Plagioclase–garnet–Al2SiO5–quartz: a potential geobarometer–geothermometer. Am. Mineral., 61, 710–714.

    Google Scholar 

  • Gordon, T.M. (1973): Determination of internally consistent thermodynamic data from phase equilibrium experiments. J. Geol., 81, 199–208.

    Article  Google Scholar 

  • Guggenheim, E.A. (1937): A theoretical basis of Raoult’s law. Trans. Faraday Soc., 33, 151–159.

    Article  Google Scholar 

  • Halbach, H. und Chatterjee, N.D. (1978): Über die Anwendung von Optimierungsmethoden zur Bestimmung thermodynamischer Daten von Mineralen. Fortschr. Miner., 56, (1) 34–35.

    Google Scholar 

  • Halbach, H. und Chatterjee, N.D. (1982a): An empirical Redlich–Kwong–type equation of state for water to 1,000°C and 200 kbar. Contrib. Mineral. Petrol., 79, 337–345.

    Article  Google Scholar 

  • Halbach, H. und Chatterjee. N.D. (1982b): The use of linear parametric programing for determining internally consistent thermodynamic data for minerals, in Schreyer, W. (ed), High Pressure Researches in Geoscience, Schweizerbartsche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Haselton, H.T. und Newton, R.C. (1980): Thermodynamics of pyrope–grossular garnets and their stabilities at high temperatures and high pressures. J. Geophys. Res., 85, 6973–6982.

    Article  Google Scholar 

  • Hazen, R.M. (1976a): Effects of temperature and pressure on the cell dimensions and x–ray temperature factors of periclase. Am. Mineral., 61, 266–271.

    Google Scholar 

  • Hazen, R.M. (1976b): Effects of temperature and pressure on the crystal structure of forsterite. Am. Mineral., 61, 1280–1293.

    Google Scholar 

  • Hazen, R.M. and Finger, L.W. (1978): Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am. Mineral., 63, 297–303.

    Google Scholar 

  • Helgeson, H.C. and Kirkham, D.H. (1974): Theoretical prediction of the thermodynamic behaviour of aqueous electrolyts at high pressures and temperatures: I Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci., 274, 1089–1198.

    Article  Google Scholar 

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978): Summary and critique of the thermodynamic properties of rock–forming minerals. Am. J. Sci., 278A, 1–229.

    Article  Google Scholar 

  • Hemingway, B.S., Krupka, K.M. and Robie, R.A. (1981): Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite, Am. Mineral., 66, 1202–1215.

    Google Scholar 

  • Hensen, B.J., Schmid, R. and Wood, B.J. (1975): Activity relationship for pyrope–grossular garnet. Contrib. Mineral. Petrol., 51, 161–166.

    Article  Google Scholar 

  • Holdaway, M.J. (1971): Stability of andalusite and aluminium silicate phase diagram. Am. J. Sci., 271, 97–131.

    Article  Google Scholar 

  • Holland, T.B.J. (1980): The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am. Mineral., 65, 129–134.

    Google Scholar 

  • Holland, T.B.J. (1981): Thermodynamic analysis of simple mineral systems, in Newton, R.C., Navrotsky, A. and Wood, B.J. (eds), Advances in physical geochemistry, vol. 1, Thermodynamics of minerals and melts. Springer Verlag, New York, pp 207–245.

    Google Scholar 

  • Holland, T.B.J., Navrotsky, A. and Newton, R.C. (1979): Thermodynamic parameters of CaMgSI2O6–Mg2SI2O6 pyroxenes based on regular solution and cooperative disordering models. Contrib. Mineral. Petrol., 69, 337–344.

    Article  Google Scholar 

  • Holloway, J.R. (1977): Fugacity and activity of molecular species in supercritical fluids. in Fraser, D.G. (ed), Thermodynamics in geology, D. Riedel Publishing Company, Dodrecht, pp 161–181.

    Google Scholar 

  • Huckenholz, H.G. and Knittel, D. (1975): Uvarovite: Stability of uvarovite–grossularite solid solutions at low pressure. Contrib. Mineral. Petrol., 49, 211–232.

    Article  Google Scholar 

  • Huckenholz, H.G., Hölzél, E. and Lindhuber, W. (1975): Grossularite, its solidus and liquidus relations in the CaO–Al2O3 –SiO2–H2O system up to 10 kbar. N. Jb. Mineral. Abh., 124, 1–46.

    Google Scholar 

  • Johannes, W. and Puhan, D. (1971): The calcite–aragonite transition, reinvestigated. Contrib. Mineral. Petrol., 31, 28–38.

    Article  Google Scholar 

  • Kerrick, D.M. and Darken, L.S. (1975): Statistical thermodynamic model for ideal oxide and silicate solutions, with application to plagioclase. Geochim. Cosmochim. Acta, 39, 1431–1442.

    Article  Google Scholar 

  • Krupka, K.M., Kerrick, D.M. and Robie, R.A. (1979a): Heat capacities of synthetic orthoenstatite and natural anthophyllite from 5 to 1000 K. EOS, 60, 405.

    Google Scholar 

  • Krupka, K.M., Robie, R.A. and Hemingway, B.S. (1979b): High temperature heat capacities of corundum, periclase, anorthite, CaAI2S12O8 glass, muscovite, pyrophyllite, KAISI3O8 glass, grossular, and NaAISI3O8 glass. Am. Mineral., 64, 86–101.

    Google Scholar 

  • Kubaschewski, O., Evans, B.W. and Alcock, C.B. (1967): Metallurgical thermochemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Kujawa, F.B. and Eugster, H.P. (1966): Stability sequences and stability levels in unary systems. Am. J. Sci., 264, 620–642.

    Article  Google Scholar 

  • Lindsley, D.H. (1983): Equilibrium relations of coexisting pairs of Ti–Fe oxides. Yb. Carnegie Instn. Wash., 62, 60–66.

    Google Scholar 

  • Lindsley, D.H. und Dixon, S.A. (1976): Diopside–enstatite equilibria at 850 to 1400°C, 5 to 35 kbars. Am. J. Sci., 276, 1285–1301.

    Article  Google Scholar 

  • Lindsley, D.H., Grover, J.E. und Davidson, P.M. (1981): The thermodynamics of the M92SI2O6 – CaMgSI2O6 join: a review and an improved model, in Newton, R.C., Navrotsky, A. und Wood, B.J. (eds), Advances in physical geochemistry, vol. 1, Thermodynamics of minerals and melts, Springer Verlag, New York, pp 149–175.

    Google Scholar 

  • Mammone, J.F., Sharma, S.K. and Nicholl, M.F. (1981): Ring structures in silica glass – A Raman spectroscopic investigation. EOS, 62, 425.

    Google Scholar 

  • Mel’nik, Y.P. (1972): Thermodynamic parameters of compressed gases and metamorphic reactions involving water and carbon dioxide. Geochem. Int., 9, 419–426.

    Google Scholar 

  • Mori, T. and Green, D.H. (1975): Pyroxenes in the system Mg2SI2O6–CaMgSI2O6 at high pressure. Earth Planet. Sci. Letters, 26, 277–286.

    Google Scholar 

  • Mori, T. and Green, D.H. (1976): Subsolidus equilibria between pyroxenes in the CaO–MgO–SiO2 system at high pressures and temperatures. Am. Mineral., 61, 616–625.

    Google Scholar 

  • Myers, J. und Eugster, H.P. (1983): The system Fe–Si–O: oxygen buffer calibrations to 1,500 K. Contrib. Mineral. Petrol., 82, 75–90.

    Article  Google Scholar 

  • Nafziger, R.H. und Muan, A. (1967): Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO–“FeO”–SiO2. Am. Mineral., 52, 1364–1385.

    Google Scholar 

  • Navrotsky, A., Newton, R.C. and Kleppa, O.J. (1973): Sillimanite disordering enthalpy by calorimetry. Geochim. Cosmochim. Acta, 37, 2497–2508.

    Article  Google Scholar 

  • Nehru, C.E. and Wyllie. P.J. (1974): Electron microprobe measurements of pyroxenes coexisting with H2O–undersaturated liquid on the join CaMgSI2O6–Mg2SI2O6–H2O at 30 kilobars with application to geothermometry. Contrib. Mineral. Petrol., 48, 221–228.

    Article  Google Scholar 

  • Newton, R.C. und Wood, B.J. (1980): Volume behaviour of silicate solid solutions. Am. Mineral., 65, 733–745

    Google Scholar 

  • Newton, R.C. und Perkins III, D. (1982): Thermodynamic calibration of geobarometers based on the assemblage garnet–plagioclase–orthopyroxene (clinopyroxene)quartz. Am. Mineral., 67, 203–222.

    Google Scholar 

  • Newton, R.C., Charlu, T.V., Anderson, P.A.M. und Kleppa, O.J. (1979): Thermochemistry of synthetic clinopyroxenes on the join CaMgSI2O6–Mg2SI2O6. Geochim. Cosmochim. Acta, 43, 55–60.

    Article  Google Scholar 

  • Newton, R.C., Charlu, T.V. und Kleppa, O.J. (1980): Thermochemistry of high structur– al state of plagioclase. Geochim. Cosmochim. Acta, 44, 55–60.

    Article  Google Scholar 

  • Newton, R.C., Wood, B.J. und Kleppa, O.J. (1981): Thermochemistry of silicate solid solutions. Bull. Mineral., 104, 162–171.

    Google Scholar 

  • Nicholls, J. (1978): The calculation of the displacement of mineral equilibria by solution of H2O in silicate melts, in Greenwood, H.J. (ed), Short course in application of thermodynamics to petrology and ore deposits, Mineral. Assoc. Canada, Evergreen Press, pp 160–184.

    Google Scholar 

  • O’Neill, H.C. und Navrotsky, A. (1983): Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution. Am. Mineral., 68, 181–194.

    Google Scholar 

  • O’Neill, H.C. und Navrotsky, A. (1984): Cation distribution and thermodynamic properties of binary spinel solid solutions. Am. Mineral., 69, 733–753.

    Google Scholar 

  • Openshaw, R.E., Hemingway, B.S., Robie, R.A., Waldbaum, D.R. und Krupka, K.M. (1976): The heat capacities at low temperatures and entropies at 298,15 K of low albite, analbite, microcline, and high sanidine. U.S. Geol. Surv. J. Res., 4, 195–204.

    Google Scholar 

  • Orville, P.M. (1967): Unit–cell parameters of the microcline–low albite and sanidinehigh albite solid solution series. Am. Mineral., 52, 55–86.

    Google Scholar 

  • Orville, P.M. (1972): Plagioclase cation exchange equilibria with aqueous chloride solutions at 700°C and 2,000 bars in the presence of quartz. Am. J. Sci., 222, 234–272.

    Article  Google Scholar 

  • Powell, R. (1978): The thermodynamics of pyroxene geotherms. Phil. Trans. Roy. Soc. London, Ser. A 288, 457–469.

    Article  Google Scholar 

  • Ramdohr, P. und Strunz, H. (1978): Klockmanns Lehrbuch der Mineralogie. Ferdinand Enke Verlag, Stuttgart.

    Google Scholar 

  • Redlich, R.C. und Kwong, J.N.S. (1949): On thermodynamics of solutions V: An equation of state. Fugacities of gaseous solutions. Chem. Rev., 44, 233–244.

    Article  Google Scholar 

  • Richardson, F.D. (1956): Activities in ternary silicate melts. Trans. Farad. Soc., 52, 1312–1324.

    Article  Google Scholar 

  • Richardson, F.D., Gilbert, M.C. und Bell, P.M. (1969): Experimental determination of kyanite–andalusite–sillimanite equilibria, the aluminium silicate triple point. Am. J. Sci., 267, 259–272.

    Article  Google Scholar 

  • Robie, R.A., Hemingway, B.S. und Fisher, J.R. (1979): Thermodynamic properties of 5 minerals and related substances at 298.15 K und 1 bar ( 10 Pascals) pressure and at higher temperatures. Geol. Surv. Bull., 1452, Washington.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S. und Takai, H. (1982): Heat capacities and entropies of Mg2SiO4, Mn2SiO4 and CO2SiO4 between 5 and 380 K. Am. Mineral., 470–482.

    Google Scholar 

  • Robin, P.-Y.F. (1974): Stress and strain in cryptoperthite lamellae and the coherent solvus of alkali feldspars. Am. Mineral., 59, 1299–1318.

    Google Scholar 

  • Saxena, S.K. (1981): Fictive component model of pyroxenes and multicomponent phase equilibria. Contrib. Mineral. Petrol., 78, 345–351.

    Article  Google Scholar 

  • Saxena, S.K. und Ghose, S. (1971): Mgt+–Fe2+ order–disorder and thermodynamics of orthopyroxene–crystalline solution. Am. Mineral., 56, 532–559.

    Google Scholar 

  • Saxena, S.K. und Nehru, C.E. (1975): Enstatite–diopside solvus and geothermometry. Contrib. Mineral. Petrol., 49, 259–267.

    Article  Google Scholar 

  • Saxena, S.K. und Ribbe, P.H.: (1972): Activity–composition reactions in feldspars. Contrib. Mineral. Petrol., 37, 131–138.

    Article  Google Scholar 

  • Seck, H.A. (1971): Koexistierende Alkalifeldspäte und Plagioklase im System NaAISI3O8–KAISI3O8–CaAI2SI2O8–H2O bei Temperaturen von 650°C bis 900°C. N. Jb. Miner. Abh., 115, 315–345.

    Google Scholar 

  • Seifert, F. (1978): Bedeutung und Nachweis von thermodynamischem Gleichgewicht und Interpretation von Ungleichgewichten. Fortschr. Miner., 55, 111–134.

    Google Scholar 

  • Seifert, F., Mysen, B.O. und Virgo, D. (1982): Three–dimensional network structure of quenched melts (glass) in the system SiO2–NaAIO2, SiO2–CaAl2O4 and SiO2–MgAl2O4. Am. Mineral., 67, 696–717.

    Google Scholar 

  • Skinner, B.J. (1956): Physical properties of end–members of the garnet group. Am. Mineral., 41, 428–436.

    Google Scholar 

  • Skinner, B.J. (1966): Thermal expansion, in Clark, S.P.Jr.(ed), Handbook of physical constant. Geol. Soc. Am., New York, pp 75–95.

    Google Scholar 

  • Smart, R.M. und Glasser, F.P. (1978): Silicate constitution of lead silicate glasses and crystals. Phys. Chem. Glass., 19, 95–102.

    Google Scholar 

  • Spencer, K.J. and Lindsley, D.H. (1981): A solution model for coexisting iron–titanium oxides. Am. Mineral., 66, 1186–1201.

    Google Scholar 

  • Sumino, Y., Anderson, O.L. und Suzuki, I. (1983): Temperature coefficients of elastic constants of single crystal MgO between 80 and 1300 K. Phys. Chem. Minerals, 9, 38–47.

    Article  Google Scholar 

  • Thompson, J.B. (1957): Thermodynamic prpoperties of simple solutions, in Abelson, P.H. (ed), Researches in geochemistry, vol. 2, John Wiley and Sons, New York, pp 340–361.

    Google Scholar 

  • Thompson, J.B.Jr und Waldbaum, D.R. (1969): Mixing properties of sanidine crystalline solutions: IV Phase diagrams from equation of state. Am. Mineral., 54, 1274–1298.

    Google Scholar 

  • Toop, G.W. und Samis, C.S. (1962): Activities of ions in silicate melts. Trans. Met. Soc. AIME, 224, 878–887.

    Google Scholar 

  • Virgo, D. und Hafner, S.S. (1969): Fee+, Mg2+ order–disorder in heated orthopyroxenes. MSA, Special Pap., 2, 67–81.

    Google Scholar 

  • Waldbaum, D.R. und Thompson, J.B. (1968): Mixing properties of sanidine crystalline solutions: II calculations based on volume data. Am. Mineral., 53, 2000–2017.

    Google Scholar 

  • Warner, R.D. und Luth, W.C. (1974): The diopside–enstatite two–phase region in the system CaMgSI2O6–Mg2SI2O6. Am. Mineral., 59, 98–109.

    Google Scholar 

  • Weil, D.S. (1966): Stability relations in the Al2O3–SiO2 system calculated from solubilities in the Al2O3–NaAIF6 system. Geochim. Cosmochim. Acta, 30, 223–237.

    Article  Google Scholar 

  • Wells, P.R.A. (1977): Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol., 62, 129–139.

    Article  Google Scholar 

  • Williams, R.J. (1971): Reaction constants in the system Fe–MgO–SiO2–02 at 1 atm between 900° and 1300°C. Am. J. Sci., 270, 334–360.

    Article  Google Scholar 

  • Wood, B.J. und Banno, S. (1973): Garnet–orthopyroxene, orthopyroxene–clinopyroxene relationship in simple and complex systems. Contrib. Miner. Petrol., 42, 109–124.

    Article  Google Scholar 

  • Wood, B.J., Holland, T.B.J., Newton, R.C. und Kleppa, O.J. (1980): Thermochemistry of jadeite–diopside pyroxenes. Geochim. Cosmochim. Acta, 44, 1363–1371.

    Article  Google Scholar 

  • Yund, R.A. (1975): Microstructure, kinetics and mechanisms of alkali feldspar exsolution, in Ribbe, P.H. (ed), MSA, Short course notes, Feldspar mineralogy. pp Y 29 – Y 57.

    Google Scholar 

  • Zen, E-An (1966): Construction of pressure–temperature diagrams for multicomponent systems after the method of Schreinemakers–a geometric approach. U.S. Geol. Surv. Bull., 1225, 1–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cemič, L. (1988). Literatur. In: Thermodynamik in der Mineralogie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73296-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73296-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18717-2

  • Online ISBN: 978-3-642-73296-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics