Advertisement

Zur Funktion nozizeptiver Afferenzen in der spinalen Motorik

  • E. D. Schomburg

Zusammenfassung

Das überwiegende Interesse der neurophysiologischen Schmerzforschung konzentrierte sich lange Zeit im wesentlichen auf zwei Fragen: zum einen auf die Bedingungen der adäquaten Erregung der Nozizeptoren durch noxische Reize, einschließlich der Frage nach einer möglichen selektiven chemischen Erregbarkeit, zum anderen auf die Probleme der aufsteigenden Informationsübertragung in der Schmerzbahn und der Verarbeitung zur bewußten Wahrnehmung, also zur Schmerzempfindung [zusammenfassende Übersichten in 5, 6, 43, 44, 57, 58]. Die spinalmotorischen Wirkungen der nozizeptiven Afferenzen waren dabei von sekundärem Interesse; denn seit Sherrington [53, 54] galt der stereotype nozifensive Flexorreflex, also der schadenverhindernde Beuge- und Fluchtreflex, als das einzige oder zumindest vorherrschende, durch nozizeptive Afferenzen hervorgerufene Korrelat im spinalmotorischen Bereich. Der klassische nozifensive Flexorreflex nach Sherrington zeichnet sich insbesondere durch drei Charakteristika aus: 1) er besitzt ein großes rezeptives Feld vorwiegend von kutanen und muskulären Nozizeptoren; 2) er strahlt auf alle Muskeln der betroffenen Extremität aus und erfaßt auch die anderen Extremitäten, wobei die kontralaterale Extremität einen gekreuzten Streckreflex zeigt; 3) er kann andere Reflexe unterdrücken [7, 25, 53, 54; zusammenfassende Übersicht in 56], und seine Hauptfunktion liegt darin „to withdraw the limb from contact with injurious agents“ [7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Baidissera F, Hultborn H, liiert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology, Vol.2, Sect. I, Nervous system, Motor control, Part 1. Am Physiol Soc, Bethesda, pp 509–595Google Scholar
  2. 2.
    Baxter DW, Olszewski J (1960) Congenital insensitivity to pain. Brain 83: 381–393PubMedCrossRefGoogle Scholar
  3. 3.
    Behrends T, Schomburg ED, Steffens H (1983 a) Facilitatory interaction between cutaneous afférents from low threshold mechanoreceptors and nociceptors in segmental reflex pathways to alpha motoneurones. Brain Res 260: 131–134PubMedCrossRefGoogle Scholar
  4. 4.
    Behrends T, Schomburg ED, Steffens H (1983 b) Group II muscle afférents and low threshold mechanoreceptive skin afférents converging onto interneurones in a common reflex pathway to alpha montoneurones. Brain Res 265: 125–128PubMedCrossRefGoogle Scholar
  5. 5.
    Besson J-M, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67: 67–186PubMedGoogle Scholar
  6. 6.
    Burgess PR, Perl ER (1973) Cutaneous mechanoreceptors and nociceptors. In: Iggo A (ed) Handbook of sensory physiology. Somatosensory system, Vol 2. Springer, Berlin Heidelberg New York, pp 29–78Google Scholar
  7. 7.
    Creed RS, Denny-Brown D, Eccles JC, Liddell EGT, Sherrington CS (1932) Reflex activity of the spinal cord. Oxford Univ Press, LondonGoogle Scholar
  8. 8.
    Dietz V, Berger W (1984) Interlimb coordination of posture in patients with spastic paresis. Impaired function of spinal reflexes. Brain 107: 965–978PubMedCrossRefGoogle Scholar
  9. 9.
    Eccles RM, Lundberg A (1959) Synaptic actions in motoneurones by afférents which may evoke the flexion reflex. Arch Ital Biol 97: 199–221Google Scholar
  10. 10.
    Engberg I (1964) Reflexes of foot muscles in the cat. Acta Physiol Scand [Suppl 235] 62: 1–64Google Scholar
  11. 11.
    Harrison PJ, Jankowska E, Johannisson T (1983) Shared reflex pathways of group I afférents of different cat hindlimb muscles. J Physiol (Lond) 338: 113–127PubMedGoogle Scholar
  12. 12.
    Holmquist B, Lundberg A (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afférents in alpha motoneurones. Acta Physiol Scand [Suppl 186] 54: 1–51Google Scholar
  13. 13.
    Hultborn H (1972) Convergence on interneurones in the reciprocal la inhibitory pathway to motoneurones. Acta Physiol Scand [Suppl 375] 85: 1–42CrossRefGoogle Scholar
  14. 14.
    Hultborn H, Illert M, Santini M (1976) Convergence on interneurones mediating the reciprocal la inhibition of motoneurones. II. Effects from segmental flexor reflex pathways. Acta Physiol Scand 96: 351–367PubMedCrossRefGoogle Scholar
  15. 15.
    Jankowska E (1979) New observations on neuronal organization of reflexes from tendon organ afférents and their relation to reflexes evoked from muscle spindle afférents. In: Granit R, Pompeiano O (eds) Progress in brain research: Reflex control of posture and movement, Vol 50. Elsevier, Amsterdam, pp 29–36CrossRefGoogle Scholar
  16. 16.
    Jankowska E (1983) Shared reflex pathways from Ib tendon organ afférents and la muscle spindle afférents in the cat. J Physiol (Lond) 338: 99–111PubMedGoogle Scholar
  17. 17.
    Jankowska E, Lundberg A (1981) Interneurones in the spinal cord. TINS 4: 230–233Google Scholar
  18. 18.
    Jankowska E, McCrea DA (1983) Shared reflex pathways from Ib tendon organ afférents and la muscle spindle afférents in the cat. J Physiol (Lond) 338: 99–111PubMedGoogle Scholar
  19. 19.
    Jankowska E, Zytnicki D (1985) Comparison of group I non-reciprocal inhibition of individual motoneurones of a homogenous population. Brain Res 329: 379–383PubMedCrossRefGoogle Scholar
  20. 20.
    Kniffki K-D (1986) Muskuläre Nociception. Edition Medizin, Verlag Chemie, WeinheimGoogle Scholar
  21. 21.
    Kniffki K-D, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31: 511–522PubMedCrossRefGoogle Scholar
  22. 22.
    Kniffki K-D, Schomburg ED, Steffens H (1979) Synaptic responses of lumbar — α-motoneurones to chemical algesic stimulation of skeletal muscle in spinal cats. Brain Res 160: 549–552PubMedCrossRefGoogle Scholar
  23. 23.
    Kniffki K-D, Schomburg ED, Steffens H (1981a) Synaptic effects from chemically activated fine muscle afférents upon α-motoneurones in decerebrate and spinal cats. Brain Res 206: 361–370PubMedCrossRefGoogle Scholar
  24. 24.
    Kniffki K-D, Schomburg ED, Steffens H (1981b) Convergence in segmental reflex pathways from fine muscle afférents and cutaneous or group II muscle afférents to α-motoneurones. Brain Res 218: 342–346PubMedCrossRefGoogle Scholar
  25. 25.
    Kugelberg E, Eklund K, Grimby L (1960) An electromyographic study of the nociceptive reflexes of the lowerlimb. Mechanism of the plantar responses. Brain 83: 394–410PubMedCrossRefGoogle Scholar
  26. 26.
    Lundberg A (1966) Integration in the reflex pathway. In: Granit R (ed) Muscular afférents and motor control. Nobel Symposium I. Almqvist & Wiksell, Stockholm, pp 275–305Google Scholar
  27. 27.
    Lundberg A (1979) Multisensorial control of spinal reflex pathways. In: Granit R, Pompeiano O (eds) Progress in brain research. Reflex control of posture and movement, Vol 50. Elsevier, Amsterdam, pp 11–28CrossRefGoogle Scholar
  28. 28.
    Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afférents to motoneurones, primary afferent terminals and ascending pathways. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biomédical Press, Amsterdam, pp 179–224Google Scholar
  29. 29.
    Lundberg A, Melmgren K, Schomburg ED (1975) Convergence from Ib, cutaneous and joint afférents in reflex pathways to motoneurones. Brain Res 87: 81–84PubMedCrossRefGoogle Scholar
  30. 30.
    Lundberg A, Malmgren K, Schomburg ED (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afférents to motoneurones. J Physiol (Lond) 265: 763–780PubMedGoogle Scholar
  31. 31.
    Lundberg A, Malmgren K, Schomburg ED (1978) Role of joint afférents in motor control ex-amplified by effects on reflex pathways from Ib afférents. J Physiol (Lond) 284: 327–343PubMedGoogle Scholar
  32. 32.
    Lundberg A, Malmgren K, Schomburg ED (1987 a) Reflex pathways from group II muscle afférents. 1. Distribution and linkage of reflex actions to alpha-motoneurones. Exp Brain Res 65: 271–281PubMedCrossRefGoogle Scholar
  33. 33.
    Lundberg A, Malmgren K, Schomburg ED (1987b) Reflex pathways from group II muscle afférents. 2. Functional characteristics of reflex pathways to alpha-motoneurones. Exp Brain Res 65: 282–293PubMedCrossRefGoogle Scholar
  34. 34.
    Lundberg A, Malmgren K, Schomburg ED (1987 c) Reflex pathways from group II muscle afférents. 3. Secondary spindle afférents and the FRA; a new hypothesis. Exp Brain Res 65: 294–306PubMedCrossRefGoogle Scholar
  35. 35.
    McMurray GA (1950) Experimental study of a case of insensitivity to pain. Arch Neurol Psychiatry (Chic) 64: 650–667Google Scholar
  36. 36.
    Meinck H-M, Benecke R, Conrad B (1985a) Spasticity and the flexor reflex. In: Delwaide PJ, Young RR (eds) Clinical neurophysiology in spasticity. Restorative neurology, Vol I. Elsevier, Amsterdam, pp 41–54Google Scholar
  37. 37.
    Meinck H-M, Benecke R, Conrad B (1985 b) Cutaneo-muscular control mechanisms in health and desease: Possible implications on spasticity. In: Struppler A, Weindl A (eds) Electromyog-raphy and evoked potentials. Springer, Berlin Heidelberg New York Tokyo, pp 75–83CrossRefGoogle Scholar
  38. 38.
    Melzack R, Wall PD (1983) The challenge of pain. Basic Books, New YorkGoogle Scholar
  39. 39.
    Mense S (1977) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol (Lond) 267: 75–88PubMedGoogle Scholar
  40. 40.
    Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol (Lond) 363: 403–417PubMedGoogle Scholar
  41. 41.
    Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72: 305–310PubMedCrossRefGoogle Scholar
  42. 42.
    Mense S, Stahnke M (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol (Lond) 342: 383–397PubMedGoogle Scholar
  43. 43.
    Perl ER (1984 a) Characterization of nociceptors and their activation of neurons in the superficial dorsal horn: First steps for the sensation of pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, Vol 6. Raven Press, New York, pp 23–51Google Scholar
  44. 44.
    Perl ER (1984b) Pain and nociception. In: Brookhart JM, Mountcastle VB (eds) handbook of physiology, Sect 1; The nervous system, Vol III; Sensory processes, Part 2. Am Physiol Soc, Bethesda, pp 915–975Google Scholar
  45. 45.
    Pierrot-Deseilligny E, Mazieres L (1985) Spinal mechanisms underlying spasticity. In: Del-waide PJ, Young RR (eds) Clinical neurophysiology in spasticity. Restorative Neurology, Vol I. Elsevier, Amsterdam, pp 63–76Google Scholar
  46. 46.
    Schaible H-G, Schmidt RF, Willis WD (1987) Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord. Exp Brain Res 66: 479–488PubMedCrossRefGoogle Scholar
  47. 47.
    Schmidt PF, Schomburg ED, Steffens H, Strohmeyer A, Wada N (1987) A nociceptive non-FRA pathway to plantaris motoneurones in the cat. Proceedings of the Physiological Society, J Physiol (Lond)Google Scholar
  48. 48.
    Schomburg ED (1980) Spinale Eigenleistungen in der Motorik. In: Cotta H, Krahl H, Steinbrück K (Hrsg) Die Belastungstoleranz des Bewegungsapparates. Thieme, Stuttgart, S 15–22Google Scholar
  49. 49.
    Schomburg ED, Behrends HB (1978) Phasic control of the transmission in the excitatory and inhibitory reflex pathways from cutaneous afférents to α-motoneurones during fictive locomotion in cats. Neurosci Lett 8: 277–282PubMedCrossRefGoogle Scholar
  50. 50.
    Schomburg ED, Behrends HB, Steffens H (1981) Changes in segmental and propriospinal reflex pathways during spinal locomotion. In: Taylor A, Prochazka A (eds) Muscle receptors and movement. Macmillan, London, pp 413–425Google Scholar
  51. 51.
    Schomburg ED, Steffens H (1985) Convergence in segmental reflex pathways from group II muscle afférents to alpha-motoneurones. In: Boyd I, Gladden M (eds) The muscle spindle. Macmillan, London, pp 273–278Google Scholar
  52. 52.
    Schomburg ED, Steffens H (1986) Synaptic responses of lumbar alpha-motoneurones to selective stimulation of cutaneous nociceptors and low threshold mechanoreceptors in high spinal cats. Exp Brain Res 62: 335–342PubMedCrossRefGoogle Scholar
  53. 53.
    Sherrington CS (1906) The integrative action of the nervous system. Yale Univ Press, New HavenGoogle Scholar
  54. 54.
    Sherrington CS (1910) Flexion-reflex of the limb, crossed extension reflex, and reflex stepping and standig. J Physiol (Lond) 40: 28–121PubMedGoogle Scholar
  55. 55.
    Struppler A, Burgmayer B, Ochs GB, Pfeiffer HG (1983) The effect of epidural application of opioids on spasticity of spinal origin. Life Sci [Suppl] 33: 607–610PubMedCrossRefGoogle Scholar
  56. 56.
    Willis WD (1982) Control of nociceptive transmission in the spinal cord. In: Ottoson D (ed) Progress in sensory physiology, Vol 3. Springer, Berlin Heidelberg New YorkGoogle Scholar
  57. 57.
    Willis WD (1985) The pain system: The neuronal basis of nociceptive transmission in the mammalian nervous system. Karger, BaselGoogle Scholar
  58. 58.
    Zimmermann M (1979) Peripheral and central nervous mechanisms of nociception, pain and pain therapy: Facts and hypotheses. In: Bonica JJ, Liebeskind JC, Albe-Fessard D (eds) Advances in pain research and therapy. Raven Press, New York, pp 3–35Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. D. Schomburg

There are no affiliations available

Personalised recommendations