Skip to main content

Metabolic and Endocrine Factors in Regulation of Nutrient Balance

  • Conference paper
The Psychobiology of Bulimia Nervosa
  • 133 Accesses

Abstract

In mammals, fat deposits represent the major store of energy. In a normal human being, for example, the nutrient intake may average 2000 kcal/day in an individual whose energy stores are 150000 kcal or 75 times larger than the daily intake. Energy intake occurs as discreet, periodic meals which are used for metabolic needs and for repletion of nutrient stores. The energy stores, on the other hand, supply metabolic fuels between meals and during longer periods of deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison T (1855) On the constitutional and local effects of disease of the supra-renal capsules. Samuel Highley, London, pp 1–43

    Google Scholar 

  • Anand B, Brobeck JR (1951) Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24: 123–140

    PubMed  CAS  Google Scholar 

  • Arase K, York DA, Shargill NS, Bray GA (1987a) Effect of cerebroventricular infusions of insulin and beta-hydroxy-butyrate on food intake and thermogenesis in the rat. Clin Res 35: 164A

    Google Scholar 

  • Arase K, York DA, Bray GA (1987b) Corticosterone inhibition of the intracerebroventricular effect of 2-deoxy-n-glucose on brown adipose tissue thermogenesis. Physiol Behav 40: 489–495

    Article  PubMed  CAS  Google Scholar 

  • Atkinson RL (1982) Naloxone decreases food intake in obese humans. J Clin Endo Metab 55: 196–198

    Article  CAS  Google Scholar 

  • Baile CA, Della-Fera MA (1986) Peptidergic control of food intake in food-producing animals. Physiol Rev 43: 2898–2902

    Google Scholar 

  • Bailey CJ, Day C, Bray GA, Lipson LG, Flatt PR (1986) Role of adrenal glands in the development of abnormal glucose and insulin homeostasis in genetically obese (ob/ob) mice. Horm Metab Res 18: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Ball GG (1974) Vagotomy: effect on electrically elicited eating and self-stimulated in the lateral hypothalamus. Science 184: 484–485

    Article  PubMed  CAS  Google Scholar 

  • Berthoud H-R, Jeanrenaud B (1979) Acute hyperinsulinemia and its reversal by vagotomy following lesions of the ventromedial hypothalamus in anesthetized rats. Endo 105: 146–151

    CAS  Google Scholar 

  • Bray GA (1969) Calorigenic effect of human growth hormone in obesity. J Clin Endo Metab 29: 119–122

    Article  CAS  Google Scholar 

  • Bray GA, Campfield LA (1975) Metabolic factors in the control of energy stores. Metab 24: 99–117

    Article  CAS  Google Scholar 

  • Bray GA, Gallagher TF (1975) Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine 54: 301–330

    Article  PubMed  CAS  Google Scholar 

  • Bray GA (1976) The obese patient. Major problems in internal medicine, vol 9. Sauners, Philadel-phia, pp 1–450

    Google Scholar 

  • Bray GA, Nishizawa Y (1978) Ventromedial hypothalamus modulates fat mobilization during fasting. Nature 27: 900–902

    Article  Google Scholar 

  • Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59: 719–809

    PubMed  CAS  Google Scholar 

  • Bray GA, Inoue S, Nishizawa Y (1981) Hypothalamic obesity. The autonomic hypothesis and lateral hypolthalamus. Diabetologia 20: 366–377

    Google Scholar 

  • Bray GA (1982) Regulation of energy balance: studies on genetic, hypothalamic and dietary obesity. Proc Nutr Soc 41: 95–108

    Article  PubMed  CAS  Google Scholar 

  • Bray GA, Scalafani A, Novin D (1982) Obesity-induced hypothalamic knife cuts: effects on lipolysis and blood insulin levels. Am J Physiol 23: R445 - R449

    Google Scholar 

  • Bray GA (1986) Autonomic and endocrine factors in the regulation of energy balance. Fed Proc 45: 1404–1410

    PubMed  CAS  Google Scholar 

  • Bray GA (1987) Obesity–a disease of nutrient or energy balance? Nutr Rev 45 (2): 33–43

    PubMed  CAS  Google Scholar 

  • Bray GA, Teague RI, Lee CK (1987) Brain uptake of ketones in rats with differing susceptibility to dietary obesity. Metabolism 36: 27–30

    Article  PubMed  CAS  Google Scholar 

  • Brown MR, Fisher J, Spiess J, Rivier J, Vale W (1982) Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology III: 928–931

    Article  Google Scholar 

  • Bruce BC, King BM, Phelps GR, Veitia MC (1982) Effects of adrenalectomy and corticosterone administration on hypothalamic obesity in rats. Am J Physiol 243: E152 - E157

    PubMed  CAS  Google Scholar 

  • Campfield LA, Brandon P, Smith FJ (1985) On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Res Bull 14 (6): 605–616

    Article  PubMed  CAS  Google Scholar 

  • Cox JE, Powley TL (1981) Prior vagotomy blocks VMH obesity in pair-fed rats. Am J Physiol 240: E573 — E583

    PubMed  CAS  Google Scholar 

  • Cushing HW (1932) The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 50: 137–195

    Google Scholar 

  • Davis JD, Wirshafter D, Asin KE, Brief D (1981) Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212: 81–83

    Article  PubMed  CAS  Google Scholar 

  • Debons AF, Siclari E, Das KC, Fuhr B (1982) Gold thioglucose induced hypothalamic damage, hyperphagia and obesity: dependence on the adrenal gland. Endocrinology 110: 2024–2029

    Article  PubMed  CAS  Google Scholar 

  • Donhoffer SF, Vonotzky J (1947) The effect of thyroxine on food intake and selection. Am J Physiol 150: 334–339

    PubMed  CAS  Google Scholar 

  • Eng R, Gold RM, Wade GN (1979) Ovariectomy — induced obesity is not prevented by subdiaphrugimiates vagotomy in rats. Physiol Behav 22: 353–356

    Article  PubMed  CAS  Google Scholar 

  • Epstein AN, Teitelbaum P (1967) Specific loss of the hypoglycemic controls of feeding in recovered lateral rats. Am J Physiol 213: 1159–1167

    PubMed  CAS  Google Scholar 

  • Forbes GB, Reina JC (1970) Adult lean body mass declines with age: Some longitudinal observations. Metabolism 19: 653–663

    Google Scholar 

  • Friedman MI, Tordoff MG (1975) Fatty acid oxidation and glucose utilization interact to control food intake in rats. Am J Physiol 20: R840 — R845

    Google Scholar 

  • Fukushima M, Lupien J, Bray GA (1985) Interaction of light and corticosterone on food intake and interscapular brown adipose tissue of rats. Am J Physiol 249: E519 — E524

    Google Scholar 

  • Galpin KS, Henderson RB, James WPT, Trayhurn P (1983) GDP binding to brown-adipose tissue mitochondria of mice treated chronically with corticosterone. Biochem J 214: 265–268

    PubMed  CAS  Google Scholar 

  • Geary N, Langhans W, Scharrer E (1981) Metabolic concomitants of glucagon induced suppression of feeding in the rat. Am J Physiol 241: R330 — R335

    PubMed  CAS  Google Scholar 

  • Gibbs J, Young RC, Smith GP (1973) Choleystokinin decreases food intake in rats. J Comp Physiol Psychol 84: 488–495

    Article  PubMed  CAS  Google Scholar 

  • Gold RM, Sawchenko PE, DeLuca C, Alexander J, Eng R (1980) Vagal mediated of hypothalamic obesity but not of supermarked dietary obesity. Am J Physiol 238: R447 — R453

    PubMed  CAS  Google Scholar 

  • Grandison L, Guidotti A (1977) Stimulation of food intake by muscimol and beta-endorphin. Neurology 16: 533–536

    CAS  Google Scholar 

  • Gray JM, Wade GN (1981) Food intake, body weight, and adiposity in female rats: actions and interactions of progestins and antiestrogens. Am J Physiol 240: E474 — E481

    PubMed  CAS  Google Scholar 

  • Grossman SP (1962) Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am J Physiol 202: 872–882

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J (1985) Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr 5: 69–94

    Article  PubMed  CAS  Google Scholar 

  • Hogan S, Himms-Hagen J, Coscina DV (1985) Lack of diet-induced thermogenesis in brown adipose tissue of obese medial hypothalamic-lesioned rats. Physiol Behav 35: 287–294

    Article  PubMed  CAS  Google Scholar 

  • Holt S, York DA (1982) The effect of adrenalectomy on GDP binding to brown adipose tissue mitochondria of obese rats. Biochem J 208: 819–822

    PubMed  CAS  Google Scholar 

  • Inoue S, Bray GA (1977) The effect by subdiaphragmatic vagotomy in rats with ventromedial hypothalamic obesity. Endocrinology 100: 108–114

    Article  PubMed  CAS  Google Scholar 

  • Keesey RE, Powley TL (1986) The regulation of body weight. Annu Rev Psychol 37: 109–133

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1975) Ingestion in the satieted rat: role of alpha and beta receptors in mediating effects of hypothalamic adrenergic stimulation. Physiol Behav 14: 743–754

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1978) Paraventricular nucleus: a primary site mediating adrenergic stimulation of feeding and drinking. Pharmacol Biochem Behav 8: 163–175

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF, Rossakis C (1978) Pharmacological characterization of perifornical hypothalamic I3-adrenergic receptors mediating feeding inhibition in the rat. Neuropharmacology 17: 691–702

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1980) Neurochemical systems of the hypothalamus in control of feeding and drinking behavior and water-electrolyte excretion. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 3a. Dekker, New York, pp 299–437

    Google Scholar 

  • Leibowitz SF, Roland CR, Hor L, Squillari V (1984) Noradrenergic feeding elicited via the para-ventricular nucleus is dependent upon circulating corticosterone. Physiol Behav 32: 857–864

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1986) Brain monoamines and peptides: role in the control of eating behavior. Fed Proc 45: 1396–1403

    PubMed  CAS  Google Scholar 

  • LeMagnen J (1983) Body energy balance and food intake: a neuroendocrine regulatory mechanism. Physiol Rev 63: 315–386

    Google Scholar 

  • Levine AS, Rogers B, Kneip J, Grace M, Morley JE (1983) Effects of centrally administered corticotropin releasing factor ( CRF) on multiple feeding paradigms. Neuropharmacology 22: 337–339

    Article  PubMed  CAS  Google Scholar 

  • Luiten PGM, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism (review). Prog Neuro 28: 1–54

    Article  CAS  Google Scholar 

  • Lupien JR, Shargill NS, Bray GA (1985) Adrenelectomy in genetically ob/ob and db/db mice increases the proton conductance pathway. Fed Proc 44 (4)

    Google Scholar 

  • Maggio CA, Presta E, Brecco EF, Vasseli JR, Kissileff HR, Pfohl DN, Hashim SA (1985) Naltrexone and human eating behavior: a dose-ranging inpatient trial in moderately obese men. Brain Res Bull 14 (6): 657–661

    Article  PubMed  CAS  Google Scholar 

  • Malcolm R, O’Neil O, Sexauer JB, Riddle FE, Currey HS, Counts C (1985) A controlled trial of naltrexone in obese humans. Intern J Obesity 9: 347–353

    CAS  Google Scholar 

  • Marchington D, Rothwell NJ, Stock MJ, York DA (1983) Energy balance, diet-induced thermogenesis and brown adipose tissue in lean and obese (fa/fa) Zucker rats after adrenalectomy. J Nutr 113: 1395–1402

    PubMed  CAS  Google Scholar 

  • McHugh PR and Moran TH (1986) The stomach, cholecystokinin and satiety. Fed Proc 45 (5): 1384–1390

    PubMed  CAS  Google Scholar 

  • Mook DG, Kenney NJ, Roberts S, Nussbaum AI, Rodier IIIWI (1972) Ovarian-adrenal inter-actions in regulation of body weight by female rats. J Comp Physiol Psychol 81: 198–211

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS, Gosnell BA, Billington CJ (1984) Neuropeptides and appetite: contribution of neuropharmacological modeling. Fed Proc 43: 2903–2907

    PubMed  CAS  Google Scholar 

  • Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y (1978) Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res 142: 384–389

    Article  PubMed  CAS  Google Scholar 

  • Niijima A, Rohner-Jeanrenaud F, Jeanrenaud B (1984) Electrophysiological studies on the role of the ventromedial hypothalamus on the sympathetic efferent nerve activity of brown adipose tissue in the rat. Am J Physiol 247: R650 — R654

    PubMed  CAS  Google Scholar 

  • Niijima A (1985) Blood glucose levels modulate efferent activity in the vagal supply to the rat liver. J Physiol (Lonel) 364: 105–112

    CAS  Google Scholar 

  • Nishizawa Y, Bray GA (1978) Ventromedial hypothalamic lesions and the mobilization of fatty acids. J Clin Invest 61: 714–721

    Article  PubMed  CAS  Google Scholar 

  • Nunez AA, Grundman M (1982) Testosterone affects food intake and body weight of weanling male rats. Pharm Biochem Behav 16: 933–936

    Article  CAS  Google Scholar 

  • Ohshima K, Shargill NS, Chan TM, Bray GA (1984) Adrenalectomy reverses insulin resistance in muscle from obese (ob/ob) mice. Am J Physiol 246: E193 — E197

    PubMed  CAS  Google Scholar 

  • Oomura Y, Kita H (1981) Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia 20: 290–298

    Article  PubMed  CAS  Google Scholar 

  • Oomura Y (1983) Glucose as a regulator of neuronal activity. Adv Metabolic Disorders 10: 31–65

    CAS  Google Scholar 

  • Panksepp J, Bishop P, Rossi J (1979) Neurohumoral and endocrine control of feeding. Psychoneuroendocrinology 4: 89–106

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Rothwell NJ, Stock MJ, Stone TW (1981) Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289: 401–402

    Article  PubMed  CAS  Google Scholar 

  • Powley TL (1977) The ventromedial hypothalamic syndrome, satiety and a cephalic phase hypothesis. Psychol Rev 84: 89–126

    Article  PubMed  CAS  Google Scholar 

  • Powley TL, Opsahl CA (1974) Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. Am J Physiol 226: 25–33

    Google Scholar 

  • Saito M, Bray GA (1983) Diurnal rhythm for corticosterone in obese (ob/ob) diabetes (db/db) and gold-thioglucose-induced obesity in mice. Endocrinology 113: 2181–2185

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Bray GA (1984) Adrenalectomy and food restriction in the genetically obese (ob/ob) mouse. Am J Physiol 246: R20–25

    PubMed  CAS  Google Scholar 

  • Sakaguchi T, Bray GA (1987) The effect of intrahypothalamic injections of glucose on sympathetic efferent firing rate. Brain Res Bull 18: 591–595

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Eddlestone, Bray GA (1986) Sympathetic activity in interscapular brown adipose tissue after hypothalamic paraventricular (Pvn) and ventromedial (VMH) lesions in rats. Clin Res 34(2): 804A (Abs)

    Google Scholar 

  • Sakaguchi T, Bray GA (1987) Intrahypothalamic insulin decreases sympathetic firing. Natl Acad Sci 84: 2012–2014

    Article  CAS  Google Scholar 

  • Schemmel RA, Teague RJ, Bray GA (1982) Obesity in Osborne-Mendel and S5B/PI rats: effects of sucrose solutions, castration, and treatment with estradiol or insulin. Am J Physiol 243: R347 — R353

    PubMed  CAS  Google Scholar 

  • Sclafani A, Aravich PF, Landman M (1981) Vagotomy blocks hypothalamic-hyperphagia in rats on a chow diet and sucrose solution but not on a palatable mixed diet. J Comp Physiol Psychol 195: 720–734

    Article  Google Scholar 

  • Sclafani A, Berner CN (1977) Hyperphagia and obesity produced by parasagittal and coronal hypothalamic knife cuts — further evidence for a longitudinal feeding inhibitory pathway. J Comp Physiol Psycho! 91: 1000–1019

    Article  CAS  Google Scholar 

  • Shargill NS, Ohshima K, Bray GA, Chan TM (1984) Muscle protein in turnover in skeletal muscle of lean and db/db/mice. Diabetes 33: 1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T (1981) Central nervous system regulation of liver and adipose tissue metabolism. Diabetologia 20: 343–356

    Article  PubMed  CAS  Google Scholar 

  • Shimomura Y, Bray GA, York DA (1981) Effects of thyroid hormone and adrenalectomy on (NA+ + K+) ATPase in the ob/ob mouse. Horm Metab Res 13: 249–253

    Article  Google Scholar 

  • Smith GP, Jerome C. Cushin B, Eterno R, Simansky HJ (1981) Abdominal vagotomy blocks satiety effects of cholecystokinin in rats. Science 213: 1036–1037

    Google Scholar 

  • Smith GP (1983) The peripheral control of appetite. Lancet 2: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Smith GP, Gibbs J (1984) Gut peptides and postprandial satiety. Fed Proc 43: 2889–2892

    PubMed  CAS  Google Scholar 

  • Stanley BG, Leibowitz SF (1985) Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 83: 3940–3943

    Article  Google Scholar 

  • Steffens AB (1975) Influence of reversible obesity on eating behavior, blood glucose and insulin in the rat. Ani J Physiol 228: 1738–1744

    CAS  Google Scholar 

  • Stellar E (1954) The physiology of motivation. Psychol Rev 61: 5–22

    Article  PubMed  CAS  Google Scholar 

  • Stern J, Brown JS, Stanhope K, Uriu J, Castonguay TW, Bray GA (1983) Adrenalectomy reduced weight gain, adipose cell size and lipoprotein lipase activity in obese male Zucker rats (fafa). Fed Proc 42: 393 (Abs)

    Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactory cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinol 36: 165–186

    Article  CAS  Google Scholar 

  • Teitelbaum P, Cheng MF, Rozin P (1965) Stages of recovery and development of lateral hypothalamic control of food and water intake. Ann NY Acad Sci 63: 558–565

    Google Scholar 

  • Thompson DA, Campbell RG (1977) Hunger in humans induced by 2-deoxy-n-glucose: glucoprivic control of taste preference and food intake. Science 198: 1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga K, Fukushima M, Kemnitz JW, Bray GA (1986) Comparison of ventromedial and para-ventricular lesions in rats that become obese. Am J Physiol 251: R1221 — R1227

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Sterotaxic mapping of the monoamine pathways in the rat brain. Acta Physio Scand [Suppl] 367: 1–48

    CAS  Google Scholar 

  • vander Tuig JG, Knehans AW, Romsos DR (1982) Reduced sympathetic nervous system activity in rats with ventromedial hypothalamic lesions. Life Sciences 30: 913–920

    Article  Google Scholar 

  • vander Tuig JG, Ohshima K, Yoshida T, Romsos DR, Bray GA (1982b) Adrenalectomy increases norepinephrine turnover in brown adipose tissue of obese (ob/ob) mice. Life Sciences 30: 1423–1432

    Article  Google Scholar 

  • Vanderweele DA, Pi-Sunyer FX, Novin D, Bush MJ (1980) Chronic insulin infusion suppresses food ingestion and body weight gain in rats. Brain Res Bull 5: 7–11

    Article  CAS  Google Scholar 

  • Wade GH, Zucker I (1978) Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants. J Comp Physiol Psychol 72: 328–336

    Article  Google Scholar 

  • Wexler BC, McMurtry JP (1984) Dexamethasone suppression of cushingoid degenerative changes in obese spontaneously hypertensive rats ( SHR ). Metab 33: 281–288

    Google Scholar 

  • Woods SC, Lotter EC, McKay LD (1974) Metabolic hormones and regulation of body weight. Psych Rev 81: 26–43

    Article  CAS  Google Scholar 

  • Woods SC, Lotter EC, McKay LD, Porte D Jr. (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 285: 503–505

    Article  Google Scholar 

  • Yoshida T, Bray GA (1984) Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am J Physiol 246: R558 — R565

    PubMed  CAS  Google Scholar 

  • Yoshida T, Kemnitz JW, Bray GA (1983) Lateral hypothalamic lesions and norepinephrine turnover in rats. J Clin Invest 72: 919–927

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu H, Niijima A, Oomura Y, Kamabe K, Kataguchi T (1984) Effects of hypothalamic lesion on pancreatic autonomic nerve activity in the rat. Brain Res 303: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Young JB, Landsberg L (1980) Impaired suppression of sympathetic activity during fasting in the gold thioglucose-treated mouse. J Clin Invest 65: 1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Yukimura Y, Bray GA (1978a) Effect of adrenalectomy of thyroid function and insulin levels in obese (ob/ob) mice. Proc Soc Exp Bio Med 159: 364–367

    CAS  Google Scholar 

  • Yukimura Y, Bray GA (1978b) Effects of adrenalectomy on body weight and the size and number of fat cells in the Zucker (fatty) rat. Endo Res Commun 5: 189–198

    Article  CAS  Google Scholar 

  • Yukimura Y, Bray GA, Wolfsen AR (1978) Some effects of adrenalectomy in the fatty rat. Endo 103: 1924–1928

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bray, G.A. (1988). Metabolic and Endocrine Factors in Regulation of Nutrient Balance. In: Pirke, K.M., Vandereycken, W., Ploog, D. (eds) The Psychobiology of Bulimia Nervosa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73267-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73267-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18670-0

  • Online ISBN: 978-3-642-73267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics