Kinetics and Reactor Design for Immobilized Cells

  • Colin R. Phillips
  • Yiu Cheong Poon
Part of the Biotechnology Monographs book series (BIOTECHNOLOGY, volume 5)


Design procedures for immobilized cell reactors are analogous to those used for solid-catalyzed chemical reactors, with the major difference being that immobilized cell kinetics are used instead of chemical kinetics. The extensive literature for the design of chemical reactors is not reviewed here; for this, the reader should refer to one of the many excellent texts in the area, for example, [1–3]. In this chapter, special considerations for immobilized cell reactors are discussed. Special considerations for immobilized enzyme reactors have been discussed by Pitcher [4].


Immobilize Cell First Order Reaction Sherwood Number Effectiveness Factor Biot Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levenspiel O (1972) Chemical reaction engineering, 2nd edn. Wiley, New York.Google Scholar
  2. 2.
    Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York.Google Scholar
  3. 3.
    Froment GF, Bischoff KB (1979) Chemical reactor analysis and design. Wiley, New York.Google Scholar
  4. 4.
    Pitcher WH Jr (1978) Adv Biochem Eng 10:1.CrossRefGoogle Scholar
  5. 5.
    Bird RB, Stewart WE, Lightfoot EE (1960) Transport phenomena. Wiley, New York.Google Scholar
  6. 6.
    Furusaki S, Seki M (1985) J Chem Eng Japan 18:389.CrossRefGoogle Scholar
  7. 7.
    Seki M, Furusaki S (1985) J Chem Eng Japan 18:461.CrossRefGoogle Scholar
  8. 8.
    Monbouquette HG, Ollis DF (1986) Ann New York Acad Sci 469:230.CrossRefGoogle Scholar
  9. 9.
    Buchholz K (1982) Adv Biochem Eng 24:39.Google Scholar
  10. 10.
    Fink DJ, Na T-Y, Schulz JS (1973) Biotechnol Bioeng 15:879.CrossRefGoogle Scholar
  11. 11.
    Chen K-C, Suga K, Taguchi H (1980) J Ferment Technol 58:439.Google Scholar
  12. 12.
    Yamane T, Araki S, Sada E (1981) J Ferment Technol 59:367.Google Scholar
  13. 13.
    Bischoff KB (1965) AIChE J 11:351.CrossRefGoogle Scholar
  14. 14.
    Goldstein L, Levin Y, Katchalski E (1964) Biochem 3:1913.CrossRefGoogle Scholar
  15. 15.
    Wharton CW, Crook EM, Brocklehurst K (1968) Eur J Biochem 6:572.CrossRefGoogle Scholar
  16. 16.
    Bunting PS, Laidler KJ (1972) Biochemistry 11:4477.CrossRefGoogle Scholar
  17. 17.
    Hinberg I, Korus R, O’Driscoll KF (1974) Biotechnol Bioeng 16:943.CrossRefGoogle Scholar
  18. 18.
    Sonomoto K, Tanaka A, Omata T, Yamane T, Fukui S (1979) Eur J Appl Microbiol Biotechnol 6:325.CrossRefGoogle Scholar
  19. 19.
    Kobayashi T, Moo-Young M (1972) Can J Chem Eng 50:162.Google Scholar
  20. 20.
    Atkinson B, Davies IJ (1974) Trans Instn Chem Engrs 52:248.Google Scholar
  21. 21.
    Gondo S, Isayama S, Kusunoki K (1974) J Chem Eng Japan 7:64.CrossRefGoogle Scholar
  22. 22.
    Kobayashi T, Ohmiya K, Simizu S (1976) J Ferment Technol 54:260.Google Scholar
  23. 23.
    Yamane T (1981) J Ferment Technol 59:375.Google Scholar
  24. 24.
    Tyagi RD, Ghose TK (1982) Biotechnol Bioeng 24:781.CrossRefGoogle Scholar
  25. 25.
    Dale MC, Okos MR, Wankat PC (1985) Biotechnol Bioeng 27:932.CrossRefGoogle Scholar
  26. 26.
    Dale MC, Okos MR, Wankat PC (1985) Biotechnol Bioeng 27:943.CrossRefGoogle Scholar
  27. 27.
    Moo-Young M, Blanch HW (1981) Adv Biochem Eng 19:1.Google Scholar
  28. 28.
    Takamatsu S, Yamashita K, Sumi A (1980) J Ferment Technol 58:129.Google Scholar
  29. 29.
    Furui M (1985) J Ferment Technol 63:467.Google Scholar
  30. 30.
    Luong JHT (1985) Biotechnol Bioeng 27:280.CrossRefGoogle Scholar
  31. 31.
    Holladay DW, Hancher CW, Chilcote DD, Scott CD (1978) AIChE Symp Ser 74:241.Google Scholar
  32. 32.
    Agrawal D, Jain VK (1986) Biotechnol Lett 8:67.CrossRefGoogle Scholar
  33. 33.
    Lortie R, Thomas D (1986) Biotechnol Bioeng 28:1256.CrossRefGoogle Scholar
  34. 34.
    Jain WK, Toran-Diaz I, Baratti J (1985) Biotechnol Bioeng 27:613.CrossRefGoogle Scholar
  35. 35.
    Sitton OC, Magruder GC, Book NL, Gaddy JL (1980) Biotechnol Bioeng Symp 10:213.Google Scholar
  36. 36.
    Furusaki S, Okamura Y, Miyauchi T (1982) J Chem Eng Japan 15:148.CrossRefGoogle Scholar
  37. 37.
    Young JC, Dahab MF (1982) Biotechnol Bioeng Symp 12:303.Google Scholar
  38. 38.
    Linko Y-Y, Kautola H, Uotila S, Linko P (1986) Biotechnol Lett 8:47.CrossRefGoogle Scholar
  39. 39.
    Kaletunc G, Dogu T (1983) Proc 33rd Can Soc Chem Eng Conf, Toronto, Canada, October 2-5, p 436.Google Scholar
  40. 40.
    Berk D, Behie LA, Jones A, Lesser BH, Gaucher GM (1984) Proc 34th Can Soc Chem Eng Conf, Quebec City, Canada, September 30-October 3, p 279.Google Scholar
  41. 41.
    Berk D, Behie LA, Jones A, Lesser BH, Gaucher GM (1984) Can J Chem Eng 62:112.CrossRefGoogle Scholar
  42. 42.
    Berk D, Behie LA, Jones A, Lesser BH, Gaucher GM (1984) Can J Chem Eng 62:120.CrossRefGoogle Scholar
  43. 43.
    Dunn IJ, Tanaka H, Uzman S, Denac M (1983) Ann New York Acad Sci 413:168.CrossRefGoogle Scholar
  44. 44.
    Bauer W (1986) Can J Chem Eng 64:561.CrossRefGoogle Scholar
  45. 45.
    Pitt WW Jr, Hancher CW, Hsu HW (1978) Am Inst Chem Engrs Symp Ser 74.Google Scholar
  46. 46.
    Tanaka M, Kawaide A, Matsuno R (1986) Biotechnol Bioeng 28:1294.CrossRefGoogle Scholar
  47. 47.
    Hogrefe W, Grossenbacher H, Cook AM, Hütter R (1986) Biotechnol Bioeng 28:1577.CrossRefGoogle Scholar
  48. 48.
    Beck M, Kiesser T, Perrier M, Bauer W (1986) Can J Chem Eng 64:553.CrossRefGoogle Scholar
  49. 49.
    Dueck CL, Neufeld RJ, Chang TMS (1986) Can J Chem Eng 64:540.CrossRefGoogle Scholar
  50. 50.
    Hsu HW (1978) Biotechnol Bioeng Symp, no 8. Wiley, New York, p 1.Google Scholar
  51. 51.
    Andrews GF, Przezdziecki J (1986) Biotechnol Bioeng 28:802.CrossRefGoogle Scholar
  52. 52.
    Vallat I, Monsan P, Riba JP (1986) Biotechnol Bioeng 28:151.CrossRefGoogle Scholar
  53. 53.
    Scott CD (1983) Biotechnol Bioeng Symp, no 13. Wiley, New York, p 287–354.Google Scholar
  54. Shieh WK, Keenan JD (1986) Adv Biochem Eng/Biotechnol 33:131.CrossRefGoogle Scholar
  55. 55.
    Webb C, Fukuda H, Atkinson B (1986) Biotechnol Bioeng 28:41.CrossRefGoogle Scholar
  56. 56.
    Del Borghi M, Converti A, Parisi F, Ferraiolo G (1985) Biotechnol Bioeng 27:761.CrossRefGoogle Scholar
  57. 57.
    Strom PF, Chung J-C (1985) Adv Biotechnol Proc 5:193.Google Scholar
  58. 58.
    Kan JK, Shuler ML (1978) AIChE Symp Ser 74:31.Google Scholar
  59. 59.
    Kleinstreuer C, Agarwal SS (1986) Biotechnol Bioeng 28:1233.CrossRefGoogle Scholar
  60. 60.
    Klei HE, Sundstrom DW, Coughlin RW, Ziolkowski K (1981) Biotechnol Bioeng Symp, no 11. Wiley, New York, p 593.Google Scholar
  61. 61.
    Miyawaki O, Nakamura K, Yano T (1982) J Chem Eng Japan 15:224.CrossRefGoogle Scholar
  62. 62.
    Tharakan JP, Chau PC (1986) Biotechnol Bioeng 28:1064.CrossRefGoogle Scholar
  63. 63.
    Katoaka H, Saigusa T, Mukataka S, Takahashi J (1980) J Ferment Technol 58:431.Google Scholar
  64. 64.
    Miyawaki O, Nakamura K, Yano T (1982) J Chem Eng Japan 15:142.CrossRefGoogle Scholar
  65. 65.
    Park TH, Kim IH, Chang HN (1985) Biotechnol Bioeng 27:1185.CrossRefGoogle Scholar
  66. 66.
    Gekas VC (1986) Enzyme Microbial Technol 8:450.CrossRefGoogle Scholar
  67. 67.
    Furusaki S, Miyauchi T (1981) J Chem Eng Japan 14:479.CrossRefGoogle Scholar
  68. 68.
    Onken U, Weiland P (1983) Adv Biotechnol Proc, vol 1. Alan R Liss, New York, p 67.Google Scholar
  69. 69.
    Shuler ML, Hallsby GA, Pyne JW Jr, Cho T (1986) Ann New York Acad Sci 469:270.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Colin R. Phillips
    • 1
  • Yiu Cheong Poon
    • 1
  1. 1.Dept. of Chemical Engineering and Applied ChemistryUniversity of TorontoOntarioCanada

Personalised recommendations