Skip to main content

Cholinesterases: Tissue and Cellular Distribution of Molecular Forms and Their Physiological Regulation

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

In Chapter 8 a we have described the molecular structure and the interactions of the multiple molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) in vertebrates. We show there that the two enzymes present globular forms (G1 G2, G4) which exist as non-hydrophobic as well as amphiphilic molecules, and asymmetric, collagen-tailed molecules (A4, A8, A12). These molecular forms may be further subdivided according to the binding of lectins or according to their electrophoretic migrations in nondenaturing electrophoresis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo S, Zani BM, Nervi C, Senni MI, Molinaro M, Ensebi F (1985) Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Lett 190:161–164

    PubMed  CAS  Google Scholar 

  • Aitken DA, Morrison NM, Ferguson-Smith (1984) Predictive value of amniotic acetylcholinesterase analysis in the diagnosis of fetal abnormality in 3700 pregnancies. Prenat Diagn 4:329–340

    PubMed  CAS  Google Scholar 

  • Anglister L, McMahan UJ (1983) Acetylcholinesterase in the synaptic basal lamina of damaged muscle fibers (Abstr). 2nd International Meeting on Cholinesterases, Bled, p 58

    Google Scholar 

  • Anglister L, McMahan UJ (1985) Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle. J Cell Biol 101:735–743

    PubMed  CAS  Google Scholar 

  • Arpagaus M, Toutant JP (1985) Polymorphism of acetylcholinesterase in adult Pieris brassicae heads. Evidence for detergent-insensitive and Triton X-100-interacting forms. Neurochem Int 7:793–804

    PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbairn A (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10 S) form. Neurosci Lett 40:199–204

    PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Perry RH, Wilson ID, Bober MJ, Blessed G, Tomlinson BE (1985) Blood acetyl and butyrylcholinesterases in senile dementia of Alzheimer type. J Neurol Sci 70:1–12

    PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the elderly human central nervous system. J Neurochem 47:263–277

    PubMed  CAS  Google Scholar 

  • Atsumi S (1971) The histogenesis of motor neurons with special reference to the correlation of their endplate formation. I. The development of endplates in the intercostal muscle in the chick embryo. Acta Anat (Basel) 80:161–182

    CAS  Google Scholar 

  • Atsumi S, Sakamoto H, Yokota S, Fujiwara T (1985) Substance P and 5-hydroxytryptamine immunoreactive presynaptic boutons on presumed α-motoneurons in the chicken ventral horn. Arch Histol Jpn 48:159–172

    PubMed  CAS  Google Scholar 

  • Bacou F (1982) The polymorphism of acetylcholinesterase in different animal species and motor innervation. Reprod Nutri Dev 22:227–233

    CAS  Google Scholar 

  • Bacou F, Vigneron P, Massoulié J (1982) Acetylcholinesterase forms in fast and slow rabbit muscle. Nature 296:661–664

    PubMed  CAS  Google Scholar 

  • Bacou F, Vigneron P, Couraud JY (1985) Retrograde effect of muscle on forms of AChE in peripheral nerves. J Neurochem 45:1178–1185

    PubMed  CAS  Google Scholar 

  • Balasubramanian AS (1984) Have cholinesterases more than one function? Trends Biochem Sci 9:467–468

    Google Scholar 

  • Barat A, Escudero E, Rodríguez-Borrajo C, Ramirez G (1983) Collagen-tailed and globular forms of acetylcholinesterase in the developing chick visual system. Neurochem Int 5:95–99

    PubMed  CAS  Google Scholar 

  • Barnard EA, Lyles JM, Pizzey JA (1982 a) Fibre types in chicken skeletal muscles and their changes in muscular dystrophy. J Physiol (Lond) 331:333–354

    CAS  Google Scholar 

  • Barnard EA, Lyles JM, Silman I, Jedrzejczyk J, Barnard PJ (1982b) Molecular forms of acetylcholinesterase and pseudocholinesterase in chicken skeletal muscles: their distribution and change with muscular dystrophy. Reprod Nutr Dev 22:261–273

    PubMed  CAS  Google Scholar 

  • Beach RL, Popiela H, Festoff BW (1983) The identification of neurotrophic factor as a transferrin. FEBS Lett 156:151–156

    PubMed  CAS  Google Scholar 

  • Benson RJJ, Porter-Jordan K, Buoniconti P, Fine RE (1985) Biochemical and cytochemical evidence indicates that coated vesicles in chick myotubes contain newly synthesized acetylcholinesterase. J Cell Biol 101:1930–1940

    PubMed  CAS  Google Scholar 

  • Berman HA, Decker MM, Sangmee J (1987) Reciprocal regulation of butyrylcholinesterase and acetylcholinesterase in mammalian skeletal muscle. Dev Biol 120:154–161

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Bon S (1982) Molecular forms of acetylcholinesterase in developing Torpedo embryos. Neurochem Int 4:577–585

    PubMed  CAS  Google Scholar 

  • Bonham JR, Atack JR (1983) A neural tube defect specific form of acetylcholinesterase in amniotic fluid. Clin Chim Acta 135:233–237

    PubMed  CAS  Google Scholar 

  • Bonham JR, Dale G, Scott D, Wagget J (1985) Molecular forms of acetylcholinesterase in Hirschsprung’s disease. Clin Chim Acta 145:297–305

    PubMed  CAS  Google Scholar 

  • Bonner PH (1978) Nerve-dependent changes in clonable myoblast populations. Dev Biol 66:207–219

    PubMed  CAS  Google Scholar 

  • Bonner PH (1980) Differentiation of chick embryo myoblasts is transiently sensitive to functional denervation. Dev Biol 76:79–86

    PubMed  CAS  Google Scholar 

  • Brandan E, Inestrosa NC (1986) The synaptic form of acetylcholinesterase binds to cell-surface heparan sulfate proteoglycans. J Neurosci Res 15:185–196

    PubMed  CAS  Google Scholar 

  • Brandan E, Maldonado M, Garrido J, Inestrosa NC (1985) Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycan. J Cell Biol 101:985–992

    PubMed  CAS  Google Scholar 

  • Brimijoin S (1983) Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol 21:291–322

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Carter J (1982) Turnover of the molecular forms of acetylcholinesterase in the rat diaphragm. J Neurochem 38:588–590

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Rakonczay Z (1986) Immunology and molecular biology of the cholinesterases: current results and prospects. Int Rev Neurobiol 28:363–410

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Schreiber PA (1982) Reduced axonal transport of 10 S acetylcholinesterase in dystrophic mice. Muscle Nerve 5:405–410

    PubMed  CAS  Google Scholar 

  • Brockman SK, Younkin SG (1986) Effect of fibrillation on the secretion of acetylcholinesterase from cultured embryonic rat myotubes. Brain Res 376:409–411

    PubMed  CAS  Google Scholar 

  • Brockman SK, Przybylski RJ, Younkin SG (1982) Cellular localization of the molecular forms of acetylcholinesterase in cultured embryonic rat myotubes. J Neurosci 2:1775–1785

    PubMed  CAS  Google Scholar 

  • Brockman SK, Younkin LH, Younkin SG (1984) The effect of spontaneous electromechanical activity on the metabolism of acetylcholinesterase in cultured embryonic rat myotubes. J Neurosci 4:131–140

    PubMed  CAS  Google Scholar 

  • Brockman SK, Usiak MF, Younkin SG (1986) Assembly of monomeric acetylcholinesterase into tetrameric and asymmetric forms. J Biol Chem 261:1201–1207

    PubMed  CAS  Google Scholar 

  • Brzin M, Sketelj J, Klinar B (1983) Cholinesterases. In: Lathja E (ed) Handbook of neurochemistry. Plenum, New York, p 251

    Google Scholar 

  • Bulger JE, Randall WR, Nieberg PS, Patterson GT, McNamee MG, Wilson BW (1982) Regulation of acetylcholinesterase forms in quail and chicken muscle cultures. Dev Neurosci 5:474–483

    PubMed  CAS  Google Scholar 

  • Carson S, Bon S, Vigny M, Massoulié J, Fardeau M (1979) Distribution of acetylcholinesterase molecular forms in neural and non-neural sections of human muscle. FEBS Lett 96:348–352

    Google Scholar 

  • Carter JL, Brimijoin S (1981) Effects of acute and chronic denervation on release of acetylcholinesterase and its molecular forms in rat diaphragms. J Neurochem 36:1018–1025

    CAS  Google Scholar 

  • Catalan RE, Martinez AM, Aragonés MD, Miguel BG, Robles A, Godoy JE (1984) Effects of substance P on acetylcholinesterase activity. Biochem Int 8:203–208

    PubMed  CAS  Google Scholar 

  • Chatonnet A, Bacou F (1983) Acetylcholinesterase molecular forms in the fast or slow muscles of the chicken and the pigeon. FEBS Lett 161:122–126

    PubMed  CAS  Google Scholar 

  • Chatonnet A, Masson P (1984) Le site peptidasique de la butyrylcholinestérase est distinct du site estérasique. C R Séances Acad Sci [III C] 229:529–534

    Google Scholar 

  • Chatonnet A, Masson P (1985) Study of the peptidasic site of Cholinesterase: preliminary results. FEBS Lett 182:493–498

    PubMed  CAS  Google Scholar 

  • Chatonnet A, Masson P (1986) Is the peptidase activity of highly purified human plasma Cholinesterase due to a specific Cholinesterase isoenzyme or a contaminating dipeptylaminopeptidase? Biochimie 68:657–667

    PubMed  CAS  Google Scholar 

  • Chubb IW (1984) Acetylcholinesterase: multiple functions? In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, pp 345–359

    Google Scholar 

  • Chubb IW, Borstein JC (1985) Dopamine and acetylcholinesterase released in the substantia nigra: cooperative or coincidental? Neurochem Int 7:905–912

    PubMed  CAS  Google Scholar 

  • Chubb IW, Millar TJ (1984) Is intracellular acetylcholinesterase involved in the processing of peptide neurotransmitters? Clin Exp Hypertens [A] 6:79–89

    CAS  Google Scholar 

  • Chubb IW, Hodgson AJ, White GH (1980) Acetylcholinesterase hydrolyzes substance P. Neuroscience 5:2065–2072

    PubMed  CAS  Google Scholar 

  • Chubb IW, Ranieri E, White GH, Hodgson AJ (1983) The enkephalins are amongst the peptides hydrolyzed by purified acetylcholinesterase. Neuroscience 10:1369–1378

    PubMed  CAS  Google Scholar 

  • Cisson CM, McQuarrie CH, Sketelj J, McNamee MG, Wilson BW (1981) Molecular forms of acetylcholinesterase in chick embryonic fast muscle: developmental changes and effects of DFP treatment. Dev Neurosci 4:157–164

    PubMed  CAS  Google Scholar 

  • Cochard P, Coltey P (1983) Cholinergic traits in the neural crest: acetylcholinesterase in crest cells of the chick embryo. Dev Biol 98:221–238

    PubMed  CAS  Google Scholar 

  • Cohen MW, Greschner M, Tucci M (1984) In vivo development of Cholinesterase at a neuromuscular junction in the absence of motor activity in Xenopus laevis. J Physiol (Lond) 348:57–66

    CAS  Google Scholar 

  • Collins PL, Younkin SG (1982) Effect of denervation on the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem 257:13638–13644

    PubMed  CAS  Google Scholar 

  • Couraud JY, di Giamberardino L, Hässig R, Mira JC (1983) Axonal transport of the molecular forms of acetylcholinesterase in developing and regenerating peripheral nerve. Exp Neurol 80:94–110

    PubMed  CAS  Google Scholar 

  • Couraud JY, Nicolet M, Hässig R (1985) Rapid axonal transport of three molecular forms of acetylcholinesterase in the frog sciatic nerve. Neuroscience 14:1141–1147

    PubMed  CAS  Google Scholar 

  • Couteaux R (1953) Particularités histochimiques des zones d’insertion du muscle strié. C R Soc Biol (Paris) 147:1974–1976

    CAS  Google Scholar 

  • Dautry-Varsat A, Lodish HF (1983) The Golgi complex and the sorting of membrane and secreted proteins. Trends Neurosci 6:484–490

    CAS  Google Scholar 

  • Davey B, Younkin SG (1978) Effect of nerve stump length on Cholinesterase in denervated rat diaphragm. Exp Neurol 59:168–175

    PubMed  CAS  Google Scholar 

  • Davis R, Koelle GB (1967) Electron microscopic localization of acetylcholinesterase and non-specific Cholinesterase at the neuro-muscular junction by gold-thioacetic acid methods. J Cell Biol 34:157–171

    PubMed  CAS  Google Scholar 

  • Davis R, Koelle GB (1978) Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. I. Normal ganglion. J Cell Biol 78:785–809

    PubMed  CAS  Google Scholar 

  • Davis R, Koelle GB, Sanville UJ (1984) Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the ciliary ganglion of the cat. J Histochem Cytochem 32:849–861

    PubMed  CAS  Google Scholar 

  • De la Porte S, Vigny M, Massoulié J, Koenig J (1984) Action of veratridine on acetylcholinesterase in cultures of rat muscle cells. Dev Biol 106:450–456

    Google Scholar 

  • De la Porte S, Vallette FM, Grassi J, Vigny M, Koenig J (1986) Pre-synaptic or post-synaptic origin of acetylcholinesterase at neuromuscular junctions? An immunological study in heterologous nerve-muscle cultures. Dev Biol 116:69–77

    Google Scholar 

  • Dettbarn WD, Groswald D, Gupta RC, Misulis KE (1985) Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 567

    Google Scholar 

  • Di Giamberardino L, Couraud JY (1978) Rapid accumulation of high molecular weight acetylcholinesterase in transected sciatic nerve. Nature 271:170–172

    PubMed  Google Scholar 

  • Donoso JA, Fernandez HL (1985) Cellular localization of cytochemically stained acetylcholinesterase activity in adult rat skeletal muscle. J Neurocytol 14:795–808

    PubMed  CAS  Google Scholar 

  • Do Thi NA, Bon C, Koenig HL, Bourre JM (1986) Acetylcholine receptors and acetylcholinesterase activity in soleus muscle of Trembler dysmyelinating mutant: a cytochemical and biochemical analysis. Neurosci Lett 65:72–78

    PubMed  Google Scholar 

  • Drews U (1975) Cholinesterase in embryonic development. Prog Histochem Cytochem 7:3

    Google Scholar 

  • Drews U, Schmidt H, Oettling G, Vanittanakom P (1986) Embryonic Cholinesterase in the chick limb bud. Acta Histochem (Jena) 32S:133–137

    Google Scholar 

  • Duprat AM, Kan P, Foulquier F, Weber M (1985) In vitro differentiation of neuronal precursor cells from amphibian late gastrulae: morphological, immunocytochemical studies, biosynthesis, accumulation and uptake of neurotransmitters. J Embryol Exp Morphol 86:71–87

    PubMed  CAS  Google Scholar 

  • Eckenstein F, Sofroniew MV (1983) Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J Neurosci 3:2286–2291

    PubMed  CAS  Google Scholar 

  • Engel A, Lambert EH, Gomez MR (1977) New myasthenic syndrome with endplate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol 1:315–330

    PubMed  CAS  Google Scholar 

  • Erulkar SD (1983) The modulation of neurotransmitter release at synaptic junctions. Rev Physiol Biochem Pharmacol 98:63–175

    PubMed  CAS  Google Scholar 

  • Falugi C, Raineri M (1985) Acetylcholinesterase (AChE) and pseudocholinesterase (BuChE) activity distribution pattern in early developing chick limbs. J Embryol Exp Morphol 86:89–108

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Duell MJ (1980) Protease inhibitors reduce effects of denervation on muscle endplate acetylcholinesterase. J Neurochem 35:1166–1171

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Seiter TC (1984) Subcellular distribution of acetylcholinesterase asymmetric forms during postnatal development of mammalian skeletal muscle. FEBS Lett 170:147–151

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Stiles JR (1984 a) Denervation induced changes in subcellular pools of 16 S acetylcholinesterase activity from adult mammalian skeletal muscle. Neurosci Lett 44:187–192

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Stiles JR (1984 b) Intra- versus extracellular recovery of 16 S acetylcholinesterase following organophosphate inactivation in the rat. Neurosci Lett 49:117–122

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Duell MJ, Festoff BW (1979) Cellular distribution of 16 S acetylcholinesterase. J Neurochem 32:581–585

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Inestrosa NC, Stiles JR (1984) Subcellular localization of acetylcholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle. Neurochem Res 9:1211–1230

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Stiles JR, Donoso JA (1986) Skeletal muscle acetylcholinesterase in amyotrophic lateral sclerosis. Muscle Nerve 9:399–406

    PubMed  CAS  Google Scholar 

  • Ferrand C, Clarous D, Delteil C, Weber M (1986) Cellular localization of the molecular forms of acetylcholinesterase in primary cultures of rat sympathetic neurons and analysis of the secreted enzyme. J Neurochem 46:349–358

    PubMed  CAS  Google Scholar 

  • Festoff BW, Fernandez HL (1981) Plasma and red blood cell acetylcholinesterase in amyotrophic lateral sclerosis. Muscle Nerve 4:41–47

    PubMed  CAS  Google Scholar 

  • Filogamo G, Gabella G (1967) The development of neuromuscular correlations in vertebrates. Arch Biol (Liège) 78:9–60

    CAS  Google Scholar 

  • Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 19:246–252

    PubMed  CAS  Google Scholar 

  • Fiszman M, Toutant M, Montarras D (1983) Biochemical evidence for two types of myoblasts during avian embryonic development. In: Limb development and regeneration, part 3. Liss, New York, p 401

    Google Scholar 

  • Futerman AH, Fiorini RM, Roth E, Michaelson DM, Low MG, Silman I (1984) Solubilization of membrane bound acetylcholinesterase by a phosphatidyl inositol-specific phospholipase C: enzymatic and physicochemical studies. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 99

    Google Scholar 

  • Futerman AH, Low MG, Michaelson DM, Silman I (1985) Solubilization of membrane- bound acetylcholinesterase by a phosphatidyl inositol-specific phospholipase C. J Neurochem 45:1487–1494

    PubMed  CAS  Google Scholar 

  • Gautron J, Rieger F, Blondet B, Pinçon-Raymond M (1983) Extrasynaptic accumulations of acetylcholinesterase in the rat sternocleidomastoid muscle after neonatal denervation: light and electron microscopic localization and molecular forms. Biol Cell 49:55–68

    PubMed  CAS  Google Scholar 

  • George ST, Balasubramanian AS (1980) The identity of serotonin-sensitive arylacylamidase with acetylcholinesterase from human erythrocytes, sheep basal ganglia and electric eel. Eur J Biochem 111:511–524

    PubMed  CAS  Google Scholar 

  • George ST, Balasubramanian AS (1981) The arylacylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. Eur J Biochem 121:177–186

    PubMed  CAS  Google Scholar 

  • Gisiger V, Stephens HR (1983 a) Correlation between the acetylcholinesterase content in motor nerves and their muscles. J Physiol (Paris) 78:720–728

    CAS  Google Scholar 

  • Gisiger V, Stephens HR (1983 b) Asymmetric and globular forms of AChE in slow and fast muscles of 129/ReJ normal and dystrophic mice. J Neurochem 41:919–929

    PubMed  CAS  Google Scholar 

  • Gisiger V, Stephens HR (1984) Decreased G4 (10 S) acetylcholinesterase content in motor nerves to fast muscles of dystrophic 129/ReJ mice: lack of a specific compartment of nerve acetylcholinesterase? J Neurochem 43:174–183

    PubMed  CAS  Google Scholar 

  • Gisiger V, Vigny M, Gautron J, Rieger F (1978) Acetylcholinesterase of rat sympathetic ganglion: molecular forms, localization and effects of denervation. J Neurochem 30:501–516

    PubMed  CAS  Google Scholar 

  • Gómez-Barriocanal J, Barat A, Escudero E, Rodriguez-Borrajo C, Ramirez G (1981) Solubilization of collagen-tailed acetylcholinesterase from chick retina: effect of different extraction procedures. J Neurochem 37:1239–1249

    PubMed  Google Scholar 

  • Goossens P, Viret J, Leterrier F (1984) Rat brain acetylcholinesterase turnover in vivo: use of a radioactive methylphosphonothiate irreversible inhibitor. Biochem Biophys Res Commun 123:71–77

    PubMed  CAS  Google Scholar 

  • Goudou D, Verdière-Sahuqué M, Rieger F (1985) External and internal AChE in rat sympathetic neurons in vivo and in vitro. FEBS Lett 186:54–58

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1982) Pseudocholinesterase staining in the primary visual pathway of the macaque monkey. Nature 299:439–442

    PubMed  CAS  Google Scholar 

  • Greenfield SA (1984) Acetylcholinesterase may have novel functions in the brain. Trends Neurosci 7:364–368

    CAS  Google Scholar 

  • Greenfield SA (1985) The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem Int 7:887–901

    PubMed  CAS  Google Scholar 

  • Greenfield SA, Shaw SG (1982) Amphetamine-evoked release of acetylcholinesterase and amino-peptidase in vivo. Neuroscience 7:2883–2893

    PubMed  CAS  Google Scholar 

  • Greenfield SA, Chéramy A, Leviel V, Glowinski J (1980) In vivo release of acetylcholinesterase in cat substantia nigra and caudate nucleus. Nature 284:355–357

    PubMed  CAS  Google Scholar 

  • Greenfield SA, Stein JF, Hodgson AJ, Chubb IW (1981) Depression of nigral pars compacta cell discharge by exogenous acetylcholinesterase. Neuroscience 6:2287–2295

    PubMed  CAS  Google Scholar 

  • Greenfield SA, Chéramy A, Glowinski J (1983) Evoked relesed of proteins from central neurons in vivo. J Neurochem 40:1048–1057

    PubMed  CAS  Google Scholar 

  • Groswald DE, Dettbarn WD (1983) Characterization of acetylcholinesterase molecular forms in slow and fast muscle of rat. Neurochem Res 8:983–995

    PubMed  CAS  Google Scholar 

  • Hall ZW (1973) Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurol 4:343–361

    CAS  Google Scholar 

  • Hall ZW, Kelly RB (1971) Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature [New Biol] 232:62–64

    CAS  Google Scholar 

  • Harris AJ (1981) Embryonic growth and innervation of rat skeletal muscles. II. Neural regulation of muscle Cholinesterase. Philos Trans R Soc Lond [Biol] 293:280–286

    Google Scholar 

  • Haynes LW, Smith ME (1982) Selective inhibition of ‘motor endplate specific’ acetylcholinesterase by beta-endorphin and related peptides. Neuroscience 7:1007–1013

    PubMed  CAS  Google Scholar 

  • Haynes LW, Smith ME (1985) Induction of endplate-specific acetylcholinesterase by beta-endorphin C-terminal dipeptide in rat and chick muscle cells. Biochem Soc Trans 13:174–175

    CAS  Google Scholar 

  • Haynes LW, Harborne AJ, Smith ME (1983) Augmentation of acetylcholine response in denervated skeletal muscle by endorphins and spinal cord-conditioned culture media. Eur J Pharmacol 86:415–425

    PubMed  CAS  Google Scholar 

  • Haynes LW, Smith ME, Li CH (1984a) Structural requirements and species specificity of the inhibition by beta-endorphin of heavy acetylcholinesterase from vertebrate skeletal muscle. Mol Pharmacol 26:45–50

    PubMed  CAS  Google Scholar 

  • Haynes LW, Smith ME, Smyth DG (1984 b) Evidence for the neurotrophic regulation of collagen-tailed acetylcholinesterase in immature skeletal muscle by beta-endorphin. J Neurochem 42:1542–1551

    PubMed  CAS  Google Scholar 

  • Haynes LW, Smith ME, Li CH (1985) The regulation by beta-endorphin and related peptides of collagen-tailed acetylcholinesterase forms in the skeletal muscles of vertebrates. In: Comparative aspects of opioid and related neuropeptides mechanisms. CRC, Boca Raton (in press)

    Google Scholar 

  • Henderson Z, Greenfield SA (1984) Ultrastructural localization of acetylcholinesterase in substantia nigra: a comparison between rat and guinea-pig. J Comp Neurol 230:278–286

    PubMed  CAS  Google Scholar 

  • Hess A (1961) Structural differences of fast and slow extrafusal fibers and their nerve endings in chickens. J Physiol (Lond) 157:221–231

    CAS  Google Scholar 

  • Huff FJ, Maire J-C, Growdon JH, Corkin S, Wurtman RJ (1986) Cholinesterases in cerebrospinal fluid. Correlations with clinical measures in Alzheimer’s disease. J Neurol Sci 72:121–129

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Ramirez BU, Fernandez HL (1977) Effect of denervation and of axoplasmic transport blockage on the in vitro release of muscle endplate acetylcholinesterase. J Neurochem 28:941–945

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Reiness CG, Reichardt LF, Hall ZW (1981) Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC 12 cells treated with nerve growth factor. J Neurosci 1:1260–1267

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Silberstein L, Hall ZW (1982) Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell 29:71–79

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Miller JB, Silberstein L, Ziskind-Conhaim L, Hall ZW (1983) Development and regulation of 16 S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Exp Cell Res 147:393–406

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Matthew WD, Reiness CG, Hall ZW, Reichardt LF (1985) Atypical distribution of asymmetric acetylcholinesterase in mutant PC 12 pheochromocytoma cells lacking a cell surface heparan sulfate-proteoglycan. J Neurochem 45:86–94

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Roberts WL, Marshall T, Rosenberry TL (1987) Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterase in other tissues. J Biol Chem 262:4441–4444

    PubMed  CAS  Google Scholar 

  • Ishida I, Deguchi T (1983) Effect of depolarizing agents on choline acetyltransferase and acetylcholinesterase activities in primary cell cultures of spinal cord. J Neurosci 9:1818–1823

    Google Scholar 

  • Ismaël Z, Millar TJ, Small DH, Chubb IW (1986) Acetylcholinesterase generates enkephalin-like immunoreactivity when it degrades the soluble proteins (chromogranins) from adrenal chromaffin granules. Brain Res 376:230–238

    PubMed  Google Scholar 

  • Jedrzejczyk J, Silman I, Lyles JM, Barnard EA (1981) Molecular forms of the cholinesterases inside and outside muscle endplates. Biosci Rep 1:45–51

    PubMed  CAS  Google Scholar 

  • Jedrzejczyk J, Silman I, Lai J, Barnard EA (1984) Molecular forms of acetylcholinesterase in synaptic and extrasynaptic region of avian tonic muscle. Neurosci Lett 46:283–289

    PubMed  CAS  Google Scholar 

  • Kaemmer D, Neubert K, Demuth HU, Barth A (1986) Contamination of highly purified human serum cholinesterase by dipeptidylpeptidase IV causing hydrolysis of substance P. Pharmazie 41:494–497

    PubMed  CAS  Google Scholar 

  • Karprzak H, Salpeter M (1985) Recovery of acetylcholinesterase at intact neuromuscular junctions after in vivo inactivation with diisopropylfluorophosphate. J Neurosci 5:951–955

    Google Scholar 

  • Kása P, Rakonczay Z (1982 a) Biochemical and histochemical evidence of 16 S acetylcholinesterase in salivary glands. J Neurochem 38:278–280

    PubMed  Google Scholar 

  • Kása P, Rakonczay Z (1982 b) Histochemical and biochemical demonstration of the molecular forms of acetylcholinesterase in peripheral nerve of rat. Acta Histochem (Jena) 70:244–257

    Google Scholar 

  • Kato AC, Vrachliotis A, Fulpius B, Dunant Y (1980) Molecular forms of acetylcholinesterase in chick muscle and ciliary ganglion: embryonic tissues and cultured cells. Dev Biol 76:222–228

    PubMed  CAS  Google Scholar 

  • Kilbinger H (1984) Presynaptic muscarinic receptors modulating acetylcholine release. In: Receptors again. Elsevier, Amsterdam, p 174

    Google Scholar 

  • Kimura H, McGeer PL, Peng JH, McGeer EG (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J Comp Neurol 200:151–201

    PubMed  CAS  Google Scholar 

  • Klinar B, Sketelj J, Sket D, Brzin M (1983) Presynaptic modulation of activity and molecular forms of acetylcholinesterase in the rat superior cervical ganglion during early postnatal development. J Neurosci Res 9:437–444

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Askanas V (1985) Acetylcholine receptors and acetylcholinesterase accumulate at the nerve-muscle contacts of de novo grown human monolayer muscle cocultured with fetal rat spinal cord. Exp Neurol 88:327–335

    PubMed  CAS  Google Scholar 

  • Koelle GB (1957) Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J Pharmacol Exp Ther 120:488–503

    PubMed  CAS  Google Scholar 

  • Koelle GB (1961) A proposed dual neurohumoral role of acetylcholine: its functions at the pre- and post-synaptic sites. Nature 190:208–211

    PubMed  CAS  Google Scholar 

  • Koelle GB, Ruch GA (1983) Demonstration of a neurotrophic factor for the maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat. Proc Natl Acad Sci USA 80:3106–3110

    PubMed  CAS  Google Scholar 

  • Koelle GB, Ruch GA, Uchida E (1983) Effects of sodium pentobarbital anesthesia and neurotrophic factor on the maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat. Proc Natl Acad Sci USA 80:6122–6125

    PubMed  CAS  Google Scholar 

  • Koelle GB, Sanville UJ, Richard KK, Williams JE (1984) Partial characterization of the neurotrophic factor for maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat in vivo. Proc Natl Acad Sci USA 81:6539–6542

    PubMed  CAS  Google Scholar 

  • Koelle GB, Sanville UJ, Wall SJ (1985) Glycyl-1-glutamine: a precursor, and glycyl-1-glutamic acid: a neurotrophic factor for maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat in vivo. Proc Natl Acad Sci USA 82:5213–5217

    PubMed  CAS  Google Scholar 

  • Koelle WA, Koelle GB (1959) The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J Pharmacol Exp Ther 126:1–8

    PubMed  CAS  Google Scholar 

  • Koenig J (1979) Formation and maturation of nerve-muscle contacts in cultured rat embryo cells. Biol Cell 35:147–152

    Google Scholar 

  • Koenig J, Vigny M (1978 a) Neural induction of the 16 S acetylcholinesterase in muscle cell cultures. Nature 271:75–77

    PubMed  CAS  Google Scholar 

  • Koenig J, Vigny M (1978b) Formes moléculaires d’acétylcholinestérase dans le muscle lent et le muscle rapide du poulet. C R Soc Biol (Paris) 172:1069–1074

    CAS  Google Scholar 

  • Koenig J, Bournaud R, Powell JA, Rieger F (1982) Appearance of contractile activity in muscular dysgenesis (mdg/mdg) mouse myotubes during coculture with normal spinal cord cells. Dev Biol 92:188–196

    PubMed  CAS  Google Scholar 

  • Kupfer C, Koelle GB (1951) The embryological development of Cholinesterase activity at the motor endplate of skeletal muscle in the rat. J Exp Zool 116:399–414

    Google Scholar 

  • Kutty KM (1980) Biological function of Cholinesterase. Clin Biochem 13:239–243

    PubMed  CAS  Google Scholar 

  • Kutty KM, Redheeran R, Murphy D (1977) Serum Cholinesterase: function in lipoprotein metabolism. Experientia 43:420–422

    Google Scholar 

  • Laasberg T, Neuman T (1985) Changes in the acetylcholinesterase and choline acetyltransferase activities in the early development of chick embryo. Rouxs Arch Dev Biol 194:306–310

    CAS  Google Scholar 

  • Lai J, Jedrzecjczyk J, Pizzey JA, Green D, Barnard EA (1986) Neural control of the forms of acetylcholinesterase in slow mammalian muscles. Nature 321:72–74

    PubMed  CAS  Google Scholar 

  • Landmesser L, Morris DG (1975) The development of functional innervation in the hind limb of the chick embryo. J Physiol (Lond) 249:301–326

    CAS  Google Scholar 

  • Lappin RI, Rubin LL (1985) Molecular forms of acetylcholinesterase in Xenopus muscle. Dev Biol 110:269–274

    PubMed  CAS  Google Scholar 

  • Layer PG (1983) Comparative localization of acetylcholinesterase and pseudocholinesterase during morphogenesis of the chicken brain. Proc Natl Acad Sci USA 80:6413–6417

    PubMed  CAS  Google Scholar 

  • Layer PG, Girgert R, Rommel S, Sporns O (1985) Development of embryonic cholinesterases and cell proliferation in chick brain and retina. J Neurochem 44:S129

    Google Scholar 

  • Lazar M, Vigny M (1980) Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma X sympathetic ganglion cell hybrid cell line. J Neurochem 35:1067–1079

    PubMed  CAS  Google Scholar 

  • Lazar M, Salmeron E, Vigny M, Massoulié J (1984) Heavy isotope labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T 28 hybrid cell line. J Biol Chem 259:3703–3713

    PubMed  CAS  Google Scholar 

  • Lefaix JC, Koenig HL, Vigny M, Bourre JM (1982) Innervation motrice de la souris Trembler. Reprod Nutr Dev 22:275–282

    PubMed  CAS  Google Scholar 

  • Li ZY, Bon C (1983) Presence of a membrane-bound acetylcholinesterase form in a preparation of nerve endings from Torpedo marmorata electric organ. J Neurochem 40:338–349

    PubMed  CAS  Google Scholar 

  • Lindenbaum MH, Livett BG (1983) Acetylcholinesterase molecular forms in C57BL/6J dystrophic mice. Muscle Nerve 6:638–645

    PubMed  CAS  Google Scholar 

  • Livneh A, Sarova I, Michaeli D, Pras M, Wagner K, Zakut H, Soreq H (1988) Antibodies against acetylcholinesterase and low levels of cholinesterases in a patient with an atypical neuromuscular disorder. Clin Immunol Immunopathol (in press)

    Google Scholar 

  • Lockridge O (1982) Substance P hydrolysis by human serum Cholinesterase. J Neurochem 39:106–110

    PubMed  CAS  Google Scholar 

  • Lømo T, Massoulié J, Vigny M (1985) Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J Neurosci 5:1180–1187

    PubMed  Google Scholar 

  • Lubinska L, Zelena J (1966) Formation of new sites of acetylcholinesterase activity in denervated muscles of young rats. Nature 210:39–41

    PubMed  CAS  Google Scholar 

  • Lucas CA, Kreutzberg GW (1985) Regulation of acetylcholinesterase secretion from neuronal cell cultures. I. Actions of nerve growth factor, cytoskeletal inhibitors and tunica-mycin. Neuroscience 14:349–360

    PubMed  CAS  Google Scholar 

  • Lyles JM, Barnard EA (1980) Disappearance of the ‘endplate’ form of acetylcholinesterase from a slow tonic muscle. FEBS Lett 109:9–12

    PubMed  CAS  Google Scholar 

  • Lyles JM, Silman I, Barnard EA (1979) Developmental changes in levels and forms of cholinesterases in muscles of normal and dystrophic chickens. J Neurochem 33:727–738

    PubMed  CAS  Google Scholar 

  • Lyles JM, Silman I, di Giamberardino L, Couraud JY, Barnard EA (1982) Comparison of the molecular forms of the cholinesterases in tissues of normal and dystrophic chickens. J Neurochem 38:1007–1021

    PubMed  CAS  Google Scholar 

  • Marquis JK, Fishman EB (1985) Presynaptic acetylcholinesterase. Trends Pharmacol Sci 6:387–388

    CAS  Google Scholar 

  • Marquis JK, Volicer L, Mark KA, Direnfeld LK, Freedman M (1985) Cholinesterase activity in plasma, erythrocytes and cerebrospinal fluid of patients with dementia of the Alzheimer type. Biol Psychiatry 20:605–610

    PubMed  CAS  Google Scholar 

  • Massoulié J, Bon S (1982) The molecular forms of cholinesterase in vertebrates. Annu Rev Neurosci 5:57–106

    PubMed  Google Scholar 

  • Massoulié J, Bon S, Lazar M, Grassi J, Marsh D, Méflah K, Toutant JP, Vallette F, Vigny M (1984) The polymorphism of cholinesterases: classification of molecular forms; interactions and solubilization characteristics; metabolic relationships and regulations. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 73

    Google Scholar 

  • Massoulié J, Vigny M, Lazar M (1985) Expression of acetylcholinesterase in murine neural cells in vivo and in culture. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 619

    Google Scholar 

  • McIsaac RS, Koelle GB (1959) Comparison of the effects of inhibition of external, internal and total acetylcholinesterase upon ganglionic transmission. J Pharmacol Exp Ther 126:9–20

    PubMed  CAS  Google Scholar 

  • McMahan UJ (1985) ESOMs: extracellular synaptic organizing molecules (abstr). International Workshop on Mechanisms of Secretion and Action of Neurotransmitters and Neuromodulators in Central and Peripheral Synapses, Jerusalem

    Google Scholar 

  • McMahan UJ, Sanes JR, Marshall LM (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271:172–174

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    PubMed  CAS  Google Scholar 

  • Metz J, Bradlow BA, Lewis SM, Dacie JV (1960) The acetylcholinesterase activity of the erythrocytes in paroxysmal nocturnal hemoglobinuria: relation to the severity of the disease. Br J Haematol 6:372

    PubMed  CAS  Google Scholar 

  • Michaelson DM, Avissar S, Kloog Y, Sokolovski M (1979) Mechanism of acetylcholine release: possible involvement of presynaptic muscarinic receptors in regulation of acetylcholine release and protein phosphorylation. Proc Natl Acad Sci USA 76:6336–6340

    PubMed  CAS  Google Scholar 

  • Miki A, Mizoguti H (1982) Acetylcholinesterase activity in the myotome of the early chick embryo. Cell Tissue Res 227:23–40

    PubMed  CAS  Google Scholar 

  • Miki A, Fujimoto E, Mizoguti H (1983) Acetylcholinesterase activity in neural crest cells of the early chick embryo. Histochemistry 78:81–93

    PubMed  CAS  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1984) Acetylcholinesterase activity in intact and homogenized skeletal muscle of the frog. J Physiol (Lond) 349:663–686

    CAS  Google Scholar 

  • Millar TJ, Chubb IW (1984) Sections of chick retinae treated with acetylcholinesterase show enhanced enkephalin and substance P immunoreactivity. Neuroscience 12:441–451

    PubMed  CAS  Google Scholar 

  • Mizobe F, Livett BG (1980) Production and release of acetylcholinesterase by a primary cell culture of bovine adrenal medullary chromaffin cells. J Neurochem 35:1469–1472

    PubMed  CAS  Google Scholar 

  • Mizobe F, Livett BG (1983) Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J Neurosci 3:871–876

    PubMed  CAS  Google Scholar 

  • Mizukawa K, McGeer PL, Tago H, Peng JH, McGeer EG, Kimura H (1986) The cholinergic system of the human hindbrain studied by choline acetyltransferase immunochemistry and acetylcholinesterase histochemistry. Brain Res 379:39–55

    PubMed  CAS  Google Scholar 

  • Moody-Corbett F, Cohen MW (1981) Localization of Cholinesterase at sites of high acetylcholine receptor density on embryonic amphibian muscle cells cultures without nerve. J Neurosci 1:596–605

    PubMed  CAS  Google Scholar 

  • Moore DE, Hess GP (1975) Acetylcholinesterase-catalyzed hydrolysis of an amide. Biochemistry 14:2386–2389

    PubMed  CAS  Google Scholar 

  • Morel N, Dreyfus P (1982) Association of acetylcholinesterase with the external surface of the presynaptic plasma membrane in Torpedo electric organ. Neurochem Int 4:283–288

    PubMed  CAS  Google Scholar 

  • Muller F, Dumez Y, Massoulié J (1985) Molecular forms and solubility of acetylcholinesterase during the embryonic development of rat and human brain. Brain Res 331:295–302

    PubMed  CAS  Google Scholar 

  • Muller F, Cédard L, Boué J, Giraudet P, Massoulié J, Boué A (1986) Diagnostic prénatal des défauts de fermeture du tube neural. Intérêt de l’électrophorèse des cholinestérases. Presse Med 15:783–786

    PubMed  CAS  Google Scholar 

  • Mumenthaler M, Engel WK (1961) Cytological localization of Cholinesterase in developing chick embryo skeletal muscle. Acta Anat (Basel) 47:274–299

    CAS  Google Scholar 

  • Nausch I, Heymann E (1985) Substance P in human plasma is degraded by dipeptylpeptidase IV, not by Cholinesterase. J Neurochem 44:1354–1357

    PubMed  CAS  Google Scholar 

  • Newman JR, Virgin JB, Younkin LH, Younkin SG (1984) Turnover of acetylcholinesterase in innervated and denervated rat diaphragm. J Physiol (Lond) 352:305–318

    CAS  Google Scholar 

  • Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF (1983) Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay acceleration factor. Proc Natl Acad Sci USA 80:5066–5070

    PubMed  CAS  Google Scholar 

  • Nicolet M, Rieger F (1982) Ubiquitous presence of the tailed, asymmetric forms of acetylcholinesterase in the peripheral and central nervous systems of the frog (Rana temporaria). Neurosci Lett 28:67–73

    PubMed  CAS  Google Scholar 

  • Nicolet M, Pinçon-Raymond M, Rieger F (1986) Globular and asymmetric acetylcholinesterase in frog muscle basal lamina sheaths. J Cell Biol 102:762–768

    PubMed  CAS  Google Scholar 

  • Oh TH, Markelonis GJ (1982) Chicken serum transferrin duplicates the myotrophic effects of sciatin on cultured cells. J Neurosci Res 8:535–545

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1983) Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 80:5430–5434

    PubMed  CAS  Google Scholar 

  • Patterson GT, Wilson BW (1986) Serum regulation of acetylcholinesterase in cultured myotubes. Exp Neurol 91:308–318

    PubMed  CAS  Google Scholar 

  • Pezzementi L, Reinheimer EJ, Pezzementi ML (1987) Acetylcholinesterase from the skeletal muscle of the lamprey Petromyzon marinus exists in globular and asymmetric forms. J Neurochem 48:1753–1760

    PubMed  CAS  Google Scholar 

  • Pilowsky PM, Hodgson AJ, Chubb IW (1982) Acetylcholinesterase in neural tube defects: a model using embryo amniotic fluid. Neuroscience 7:1203–1214

    PubMed  CAS  Google Scholar 

  • Poiana G, Scarsella G, Biagioni S, Senni MI, Cossu G (1985) Membrane acetylcholinesterase in murine muscular dystrophy in vivo and in cultured myotubes. Int J Dev Neurosci 3:331–340

    CAS  Google Scholar 

  • Poiana G, Leone F, Longstaff A, Scarsella G, Biagioni S (1986) Muscle acetylcholinesterase in childhood myopathies. Neurochem Int 9:239–245

    Google Scholar 

  • Popiela H, Beach RL, Festoff BW (1983) Appearance of acetylcholinesterase molecular forms in noninnervated cultured primary chick muscle cells. Cell Mol Neurobiol 3:263–277

    PubMed  CAS  Google Scholar 

  • Popiela H, Beach RL, Festoff BW (1984) Developmental appearance of acetylcholinesterase molecular forms in cultured primary chick muscle cells. In: Serratrice G (ed) Neuromuscular diseases. Raven, New York, p 447

    Google Scholar 

  • Powell JA, Friedman B, Cossi A (1979) Tissue culture study of murine muscular dysgenesis: role of spontaneous action potential generation in the regulation of muscle maturation. Ann NY Acad Sci 317:550–570

    PubMed  CAS  Google Scholar 

  • Powell JA, Peterson AC, Paul C (1984) Neurons induce contractions in myotubes containing only muscular dysgenic nuclei. Muscle Nerve 7:904–910

    Google Scholar 

  • Rakonczay Z (1986) Mammalian brain acetylcholinesterase. In: Boulton AA, Baker GB, Yu PH (eds) Neurotransmitter enzymes. Humana, Clifton, p 319 (Neuromethods, vol 5)

    Google Scholar 

  • Rakonczay Z, Nemeth P (1984) Change in the distribution of acetylcholinesterase molecular forms in Hirschsprung’s disease. J Neurochem 43:1194–1196

    PubMed  CAS  Google Scholar 

  • Rama-Sastry BV, Sadavongvivad C (1979) Cholinergic system in non-nervous tissue. Pharmacol Rev 30:65–132

    Google Scholar 

  • Randall WR, Lai J, Barnard EA (1985) Acetylcholinesterase of muscle and nerve. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 595

    Google Scholar 

  • Rasool CG, Chad D, Bradley WG, Conolly B, Barnah JK (1983) Acetylcholinesterases and ATPases in motor neuron degenerative diseases. Muscle Nerve 6:430–435

    PubMed  CAS  Google Scholar 

  • Rathbone MP, Vickers JD, Ganagarajah M, Brown JA, Logan MD (1979) Neural regulation of cholinesterases in newt skeletal muscle. I. Distribution and characterization of the enzyme species. J Exp Zool 210:435–450

    CAS  Google Scholar 

  • Raynaud B, Clarous D, Vidal S, Ferrand C, Weber MJ (1987) Comparison of the effects of elevated K+ ions and muscle-conditioned medium on the neurotransmitter phenotype of cultured sympathetic neurons. Dev Biol (in press)

    Google Scholar 

  • Razon N, Soreq H, Roth E, Bartal A, Silman I (1984) Characterization of activities and forms of cholinesterases in human primary brain tumors. Exp Neurol 84:681–695

    PubMed  CAS  Google Scholar 

  • Reich A, Drews U (1983) Choline acetyltransferase in the chick limb bud. Histochemistry 78:383–389

    PubMed  CAS  Google Scholar 

  • Richardson GP, Witzemann V (1986) Torpedo electromotor system development: biochemical differentiation of Torpedo electrocytes in vitro. Neuroscience 17:1287–1296

    PubMed  CAS  Google Scholar 

  • Richardson GP, Krenz WD, Kirk C, Fox GQ (1981) Organotypic culture of embryonic electromotor system tissues from Torpedo marmorata. Neuroscience 6:1181–1200

    PubMed  CAS  Google Scholar 

  • Rieger F, Faivre-Bauman A, Benda P, Vigny M (1976) Molecular forms of acetylcholinesterase: their de novo synthesis in mouse neuroblastoma cells. J Neurochem 27:1059–1063

    PubMed  CAS  Google Scholar 

  • Rieger F, Koenig J, Vigny M (1980 a) Spontaneous contractile activity and the presence of the 16 S form of acetylcholinesterase in rat muscle cells in culture. Reversible suppressive action of tetrodotoxin. Dev Biol 76:358–365

    PubMed  CAS  Google Scholar 

  • Rieger F, Shelanski ML, Greene LA (1980 b) The effects of nerve growth factor on acetylcholinesterase and its molecular forms in cultures of rat PC 12 pheochromocytoma cells: increased total specific activity and appearance of the 16 S molecular form. Dev Biol 76:238–248

    PubMed  CAS  Google Scholar 

  • Rieger F, Shelanski ML, Sidman RL (1983) The multiple molecular forms of acetylcholinesterase in ‘motor endplate disease’ in the mouse (medJ and med allelic forms): sensitivity of the 10 S form to partial or total loss of muscle activity. Exp Neurol 79:299–315

    PubMed  CAS  Google Scholar 

  • Rieger F, Powell JA, Pinçon-Raymond M (1984 a) Extensive nerve overgrowth and paucity of the tailed asymmetric form (16 S) of acetylcholinesterase in the developing skeletal neuromuscular system of the dysgenic (mdg/mdg) mouse. Dev Biol 101:181–191

    PubMed  CAS  Google Scholar 

  • Rieger F, Pinçon-Raymond M, Lombet A, Ponzio G, Lazdunski M, Sidman RL (1984b) Paranodal dysmelination and increase in tetrodotoxin binding sites in the sciatic nerve of the motor end-plate disease (med/med) mouse during postnatal development. Dev Biol 101:401–409

    PubMed  CAS  Google Scholar 

  • Rieger F, Cross D, Peterson A, Pinçon-Raymond M, Tretjakoff I (1984 c) Disease expression in +/+ mdg/mdg mouse chimeras: evidence for an extramuscular component in the pathogenesis of both dysgenic abnormal diaphragm innervation and skeletal muscle 16 S acetylcholinesterase deficiency. Dev Biol 106:296–306

    PubMed  CAS  Google Scholar 

  • Rieger F, Goudou D, Tran LH (1984 d) Increase of junctional and background 16 S (tailed, asymmetric) acetylcholinesterase during postnatal maturation of rat and mouse sternocleidomastoid muscle. J Neurochem 42:601–606

    PubMed  CAS  Google Scholar 

  • Ritchie AK, Fambrough DM (1975) Electrophysiological properties of the membrane and acetylcholine receptor in developing rat and chick myotubes. J Gen Physiol 66:4790–4799

    Google Scholar 

  • Robertson RT (1987) A morphogenic role for transiently expressed acetylcholinesterase in thalamocortical development? Neurosci Lett 75:259–264

    PubMed  CAS  Google Scholar 

  • Robertson RT, Tijerina AA, Gallivan ME (1985) Transient patterns of acetylcholinesterase activity in visual cortex of the rat: normal development and the effects of neonatal monocular enucleation. Dev Brain Res 21:203–214

    CAS  Google Scholar 

  • Rodriguez-Borrajo C, Barat A, Ramirez C (1982) Solubilization of collagen-tailed molecular forms of acetylcholinesterase from several brain areas in different vertebrate species. Neurochem Int 4:563–568

    PubMed  CAS  Google Scholar 

  • Rosenberry TL (1979) Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine receptor and acetylcholinesterase. Biophys J 26:263–290

    PubMed  CAS  Google Scholar 

  • Rotundo RL (1984 a) Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci USA 81:479–483

    PubMed  CAS  Google Scholar 

  • Rotundo RL (1984b) Synthesis, assembly, and processing of AChE in tissue cultured muscle. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 203

    Google Scholar 

  • Rotundo RL, Fambrough DM (1979) Molecular forms of chicken embryo acetylcholinesterase in vitro and in vivo, isolation and characterization. J Biol Chem 254:4790–4799

    PubMed  CAS  Google Scholar 

  • Rotundo RL, Fambrough DM (1980 a) Synthesis, transport and fate of acetylcholinesterase in cultured chick embryo muscle cells. Cell 22:583–594

    PubMed  CAS  Google Scholar 

  • Rotundo RL, Fambrough DM (1980b) Secretion of acetylcholinesterase: relation to acetylcholine receptor metabolism. Cell 22:595–602

    PubMed  CAS  Google Scholar 

  • Rotundo RL, Fambrough DM (1982) Synthesis, transport and fate of acetylcholinesterase and acetylcholine receptors in cultured muscle. In: Membranes in growth and development. Liss, New York, p 259

    Google Scholar 

  • Rubin LL (1985) Increases in muscle Ca2+ mediate changes in acetylcholinesterase and acetylcholine receptors caused by muscle contraction. Proc Natl Acad Sci USA 82:7121–7125

    PubMed  CAS  Google Scholar 

  • Rubin LL, Schuetze SM, Fischbach GD (1979) Accumulation of acetylcholinesterase at newly formed nerve-muscle synapses. Dev Biol 69:46–58

    PubMed  CAS  Google Scholar 

  • Rubin LL, Schuetze SM, Weill CL, Fischbach GD (1980) Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro. Nature 283:264–267

    PubMed  CAS  Google Scholar 

  • Rubin LL, Chalfin NA, Adamo A, Klymkowsky M (1985) Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures. J Neurochem 45:1932–1940

    PubMed  CAS  Google Scholar 

  • Russell RW, Booth RA, Jenden DJ, Roch M, Rice KM (1985) Changes in presynaptic release of acetylcholine during development of tolerance to the anticholinesterase, DFP. J Neurochem 45:293–299

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Ohsato K, Atsumi S (1985) Acetylcholinesterase activity at the presynaptic boutons with presumed α-motoneurons in chicken ventral horn. Light- and electron- microscopic studies. Histochemistry 83:291–298

    PubMed  CAS  Google Scholar 

  • Salpeter M (1967) Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. I. The distribution of acetylcholinesterase at motor endplates of a vertebrate twitch muscle. J Cell Biol 32:379–389

    PubMed  CAS  Google Scholar 

  • Sampson SR, Babila T, Disatnik MH, Shainberg A, Yales E (1983) Evidence for a functional role of acetylcholinesterase in cultured chick myotubes. Brain Res 289:338–341

    PubMed  CAS  Google Scholar 

  • Sanes JR, Lawrence JC Jr (1983) Activity-dependent accumulation of basal lamina by cultured rat myotubes. Dev Biol 97:123–136

    PubMed  CAS  Google Scholar 

  • Sanes JR, Feldman DH, Cheney JM, Lawrence JC Jr (1984) Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J Neurosci 4:464–473

    PubMed  CAS  Google Scholar 

  • Satoh K, Armstrong DM, Fibiger HC (1983) A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res Bull 11:693–720

    PubMed  CAS  Google Scholar 

  • Schmidt H (1981) Muscarinic acetylcholine receptor in chick limb bud during morphogenesis. Histochemistry 71:89–98

    PubMed  CAS  Google Scholar 

  • Schmidt H, Oettling G, Kaufenstein T, Hartung G, Drews U (1984) Intracellular calcium mobilization on stimulation of the muscarinic cholinergic receptor in chick limb bud cells. Rouxs Arch Dev Biol 194:44–49

    CAS  Google Scholar 

  • Schröder C (1980) Characterization of embryonic Cholinesterase in chick limb bud by colorimetry and disk electrophoresis. Histochemistry 69:243–253

    PubMed  Google Scholar 

  • Seller M, Cole KJ, Fenson AH, Polani PE (1980) Amniotic fluid acetylcholinesterase and prenatal diagnosis. Br J Obstet Gynaecol 87:501–505

    PubMed  CAS  Google Scholar 

  • Silberstein L, Inestrosa NC, Hall ZW (1982) Aneural muscle cell cultures make synaptic basal lamina components. Nature 295:143–145

    PubMed  CAS  Google Scholar 

  • Silver A (1963) A histochemical investigation of cholinesterases at neuromuscular junctions in mammalian and avian muscle. J Physiol (Lond) 169:386–393

    CAS  Google Scholar 

  • Silver A (1971) The significance of cholinesterase in the developing nervous system. Prog Brain Res 34:345–355

    CAS  Google Scholar 

  • Silver A (1974) The biology of cholinesterases. North-Holland, Amsterdam

    Google Scholar 

  • Sket D, Pavlin R (1985) Cholinesterases in single nerve cells isolated from locus ceruleus and from nucleus of the facial nerve of the rat: a microgasometric study. J Neurochem 45:319–323

    PubMed  CAS  Google Scholar 

  • Sketelj J, Brzin M (1979) Attachment of acetylcholinesterase to structures of the motor endplate. Histochemistry 61:239–248

    PubMed  CAS  Google Scholar 

  • Sketelj J, Brzin M (1980) 16 S acetylcholinesterase in endplate-free regions of developing rat diaphragm. Neurochem Res 5:653–658

    PubMed  CAS  Google Scholar 

  • Sketelj J, Brzin M (1985) Asymmetric molecular forms of acetylcholinesterase in mammalian skeletal muscles. J Neurochem Res 14:95–103

    CAS  Google Scholar 

  • Sketelj J, Blinc A, Brzin M (1985) Acetylcholinesterase in regenerating skeletal muscles. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 709

    Google Scholar 

  • Small DH, Ismaël Z, Chubb IW (1986) Acetylcholinesterase hydrolyses chromogranin A to yield low molecular weight peptides. Neuroscience 19:289–295

    PubMed  CAS  Google Scholar 

  • Smith AD, Wald NJ, Cuckle HS, Stirrat GM, Bobrow M, Lagercrantz H (1979) Amniotic fluid acetylcholinesterase as a possible test for neural tube defects in early pregnancy. Lancet 1:685–688

    PubMed  CAS  Google Scholar 

  • Sohal GS, Wrenn RW (1984) Appearance of high-molecular weight acetylcholinesterase in aneural muscle developing in vivo. Dev Biol 101:229–234

    PubMed  CAS  Google Scholar 

  • St Clair DM, Brock DJH, Barron L (1986) A monoclonal antibody assay technique for plasma and red cell acetylcholinesterase activity in Alzheimer’s disease. J Neurol Sci 73:169–176

    PubMed  CAS  Google Scholar 

  • Sugarman J, Devine DV, Rosse WF (1986) Structural and functional difference between decay-acceleration factor and red cell acetylcholinesterase. Blood 68:680–684

    PubMed  CAS  Google Scholar 

  • Swerts JP, Weber MJ (1984) Regulation of enzyme responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. III. Effects of sodium butyrate. Dev Biol 106:282–288

    PubMed  CAS  Google Scholar 

  • Swerts JP, Le Van Thai A, Vigny A, Weber MJ (1983) Regulation of enzymes responsible for the neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. I. Effects of muscle conditioned medium. Dev Biol 100:1–11

    PubMed  CAS  Google Scholar 

  • Swerts JP, Le Van Thai A, Weber MJ (1984) Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. II. Regulation of 16 S acetylcholinesterase by conditioned medium. Dev Biol 103:230–234

    PubMed  CAS  Google Scholar 

  • Taylor PB, Rieger F, Shelanski ML, Greene LA (1981) Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells. J Biol Chem 256:3827–3830

    PubMed  CAS  Google Scholar 

  • Tennyson VM, Kremzner LT, Brzin M (1977) Electron microscopic cytochemical and histochemical studies of acetylcholinesterase in denervated muscle of rabbits. J Neuropathol Exp Neurol 36:245–275

    PubMed  CAS  Google Scholar 

  • Toutant JP, Massoulié J (1987) Acetylcholinesterase. In: Turner AJ, Kelly AJ (eds) Mammalian ectoenzymes. Elsevier/North-Holland, Amsterdam (in press)

    Google Scholar 

  • Toutant JP, Toutant M, Fiszman M, Massoulié J (1983) Expression of the A 12 form of acetylcholinesterase by developing avian leg muscle cells in vivo and during differentiation in primary cell cultures. Neurochem Int 5:751–762

    PubMed  CAS  Google Scholar 

  • Toutant JP, Massoulié J, Bon S (1985) Polymorphism of pseudocholinesterase in Torpedo marmorata tissues: comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase. J Neurochem 44:580–592

    PubMed  CAS  Google Scholar 

  • Toutant M, Montarras D, Fiszman M (1984) Biochemical evidence for two classes of myoblasts during chick embryonic muscle development. Exp Biol Med 9:10–15

    CAS  Google Scholar 

  • Uchida E, Koelle GB (1983) Identification of the probable site of synthesis of butyrylcholinesterase in the superior cervical and ciliary ganglia of the cat. Proc Natl Acad Sci USA 80:6723–6727

    PubMed  CAS  Google Scholar 

  • Vallette FM, Vigny M, Massoulié J (1986) Muscular differentiation of chicken myotubes in a simple defined synthetic culture medium and in serum supplemented media: expression of the molecular forms of acetylcholinesterase. Neurochem Int 8:121–133

    PubMed  CAS  Google Scholar 

  • Vallette FM, Fauquet M, Teillet MA (1987) Difference in the expression of asymmetric acetylcholinesterase molecular forms during myogenesis in early avian dermomyotomes and limb buds in ovo and in vitro. Dev Biol 120:77–84

    PubMed  CAS  Google Scholar 

  • Verdière M, Dérer M, Rieger F (1982) Multiple molecular forms of rat superior cervical ganglion acetylcholinesterase: developmental aspects in primary cell culture and during postnatal maturation in ovo. Dev Biol 89:509–515

    PubMed  Google Scholar 

  • Verdière M, Dérer M, Poullet M (1984) Decrease of tailed, asymmetric 16 S acetylcholinesterase in rat superior cervical ganglion neurons in vitro after potassium depolarization: partial antagonist action of a calcium-channel blocker. Neurosci Lett 52:135–140

    PubMed  Google Scholar 

  • Vigny M, Vallette F (1985) Distribution and regulation of acetylcholinesterase forms in chick myotubes: comparison with rat myotubes. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 719

    Google Scholar 

  • Vigny M, di Giamberardino L, Couraud JY, Rieger F, Koenig J (1976) Molecular forms of chicken acetylcholinesterase: effect of denervation. FEBS Lett 69:277–280

    PubMed  CAS  Google Scholar 

  • Vigny M, Gisiger V, Massoulié J (1978) ‘Non specific’ Cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties and significance of the two enzyme systems. Proc Natl Acad Sci USA 75:2588–2592

    PubMed  CAS  Google Scholar 

  • Volle RL (1980) Ganglionic actions of anticholinesterase agents, catecholamines, neuromuscular blocking agents and local anaesthetics. In: Kharkevich DA (ed) Pharmacology of ganglionic transmission. Springer, Berlin Heidelberg New York, p 385

    Google Scholar 

  • Wallace BG (1986) Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase and butyrylcholinesterase on cultured myotubes. J Cell Biol 102:783–794

    PubMed  CAS  Google Scholar 

  • Wallace BG, Nitkin RM, Reist NE, Fallon JR, Moayeri NN, McMahan UJ (1985) Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor. Nature 315:574–577

    PubMed  CAS  Google Scholar 

  • Weber M (1981) A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons. Partial purification and characterization. J Biol Chem 256:3447–3453

    PubMed  CAS  Google Scholar 

  • Weinberg CG, Hall ZW (1979) Junctional form of acetylcholinesterase restored at nerve free endplate. Dev Biol 68:631–635

    PubMed  CAS  Google Scholar 

  • Weldon PR, Moody-Corbett F, Cohen MW (1981) Ultrastructure of sites of cholinesterase activity on amphibian embryonic muscle cells cultured without nerve. Dev Biol 84:341–350

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Mahler HR, Moore WJ (1974) The half-life of acetylcholinesterase in mature rat brain. J Neurochem 22:941–943

    PubMed  CAS  Google Scholar 

  • White NK, Bonner PH, Nelson DR, Hauschka SD (1975) Clonal analysis of vertebrate myogenesis. IV. Medium-dependent classification of colony forming cells. Dev Biol 44:346–361

    PubMed  CAS  Google Scholar 

  • Whittaker VP (1963) Identification of acetylcholine and related esters of biological origin. In: Koelle GB (ed) Cholinesterase and anticholinesterase agents. Springer, Berlin Göttingen Heidelberg, pp 1–39 (Handbuch der experimentellen Pharmakologie, vol 15 [Suppl])

    Google Scholar 

  • Witzemann V, Boustead C (1982) Changes in acetylcholinesterase molecular forms during the embryonic development of Torpedo marmorata. J Neurochem 39:747–755

    PubMed  CAS  Google Scholar 

  • Younkin SG, Rosenstein C, Collins PL, Rosenberry TL (1982) Cellular localization of the molecular forms of AChE in rat diaphragm. J Biol Chem 257:13630–13637

    PubMed  CAS  Google Scholar 

  • Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH (1986) Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed Proc 45:2982–2988

    PubMed  CAS  Google Scholar 

  • Zakut H, Matzkel A, Schejter E, Avni A, Soreq H (1985) Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain. J Neurochem 45:382–389

    PubMed  CAS  Google Scholar 

  • Ziskind-Conhaim L, Inestrosa NC, Hall ZW (1984) Acetylcholinesterase is functional in embryonic rat muscle before its accumulation at the sites of nerve-muscle contact. Dev Biol 103:369–377

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toutant, JP., Massoulié, J. (1988). Cholinesterases: Tissue and Cellular Distribution of Molecular Forms and Their Physiological Regulation. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics