Skip to main content

Cholinergic-Specific Antigens

  • Chapter
The Cholinergic Synapse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

In recent years immunochemical techniques have begun to play a much larger role in neurobiology than formerly. They have been applied in various ways and for different purposes. Antibodies raised against components specific for a particular type of nerve cell may be used to trace its location and connections within the nervous system. Antibodies raised against known transmitter-specific components may be used to trace pathways utilizing neurons of this particular transmitter type. In the cholinergic system, choline acetyltransferase (ChAT) is the obvious component to select, and both polyclonal and monoclonal antibodies which are specific for ChAT are now available. In Chap. 22 the results of such studies are reviewed. Such methods have tended to replace histochemical methods which rely on a chemical reation; thus methods based on ChAT immunohistochemistry have tended to displace older methods which detected acetylcholinesterase (AChE), in itself not always a reliable cholinergic marker, by precipitating the thioacetate generated by the enzymic hydrolysis of acetylthiocholine as the copper salt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoston DV, Conlon MJ (1986) Presence of VIP-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata. J Neurochem 47:445–453

    Article  PubMed  CAS  Google Scholar 

  • Agoston DV, Dowe GHC, Fiedler W, Giompres PE, Roed IS, Walker JH, Whittaker VP, Yamaguchi T (1986) The use of synaptic vesicle proteoglycan as a stable marker in kinetic studies of vesicle recycling. J Neurochem 47:1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Agoston DV, Borroni E, Richardson PJ (1988) Cholinergic surface antigen Chol-1 in present in a subclass of VIP-containing rat cortical synaptosomes. J Neurochem (in press)

    Google Scholar 

  • Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100:1284–1294

    Article  PubMed  CAS  Google Scholar 

  • Buckley KM, Schweitzer ES, Miljanich GP, Clift-O’Grady L, Kushner PD, Reichardt LF, Kelly RB (1983) A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane. Proc Natl Acad Sci USA 80:7342–7346

    Article  PubMed  CAS  Google Scholar 

  • Carlson SS, Kelly RB (1980) An antiserum specific for cholinergic synaptic vesicles from electric organ. J Cell Biol 87:98–103

    Article  PubMed  CAS  Google Scholar 

  • Carlson SS, Kelly RB (1983) A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles. J Biol Chem 258:11082–11091

    PubMed  CAS  Google Scholar 

  • Carlson SS, Wight TN (1987) Nerve terminal anchorage protein 1 (TAP-1) is a chondroitin sulfate proteoglycan: biochemical and electron microscopic characterization. J Cell Biol 105:3075–3086

    Article  PubMed  CAS  Google Scholar 

  • Carlson SS, Caroni P, Kelly RB (1986) A nerve terminal anchorage protein from electric organ. J Cell Biol 103:509–520

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Carlson SS, Schweitzer E, Kelly RB (1985) Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse. Nature 314:441–443

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Larsson PA, Carlson SS, Bööj S (1985) Localization and axonal transport of immunoreactive cholinergic organelles in rat motor neurons — an immunofluorescent study. Neuroscience 14:607–625

    Article  PubMed  Google Scholar 

  • Docherty M, Bradford HF (1986) A cell-surface antigen of cholinergic nerve terminals recognized by antisera to choline acetyltransferase. Neurosci Lett 70:234–238

    Article  PubMed  CAS  Google Scholar 

  • Docherty M, Bradford HF, Cash CD, Maitre M (1985 a) Specific immunolysis of serotonic nerve terminals using an antiserum against tryptophan hydroxylase. FEBS Lett 182:489–492

    Article  PubMed  CAS  Google Scholar 

  • Docherty M, Bradford HF, Wu JY, Joh TH, Reis DJ (1985 b) Evidence for specific immunolysis of nerve terminals using antisera against choline acetyltransferase, glutamate decarboxylase and tyrosine hydroxylase. Brain Res 339:105–113

    Article  PubMed  CAS  Google Scholar 

  • Dodd J, Jessell TM (1985) Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. J Neurosci 5:3278–3294

    PubMed  CAS  Google Scholar 

  • Ferretti P, Borroni E (1984) Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membrane. J Neurochem 42:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Ferretti P, Borroni E (1986) Putative cholinergic-specific gangliosides in guinea-pig forebrain. J Neurochem 46:1888–1894

    Article  PubMed  CAS  Google Scholar 

  • Fiedler W, Borroni E, Ferretti F (1986) An immunohistochemical study of synaptogenesis in the electric organ of Torpedo using antisera to vesicular and presynaptic plasma membrane components. Cell Tissue Res 246:439–446

    Article  PubMed  CAS  Google Scholar 

  • Fox GQ, Kötting D (1984) Torpedo electromotor system development: a quantitative analysis of synaptogenesis. J Comp Neurol 224:337–343

    Article  PubMed  CAS  Google Scholar 

  • Hooper JE, Carlson SS, Kelly RB (1980) Antibodies to synaptic vesicles purified from Narcine electric organ bind a sub-class of mammalian nerve terminals. J Cell Biol 87:104–113

    Article  PubMed  CAS  Google Scholar 

  • Jones RT, Walker JH, Richardson PJ, Fox GQ, Whittaker VP (1981) Immunohistochemical localization of cholinergic nerve terminals. Cell Tissue Res 218:355–373

    Article  PubMed  CAS  Google Scholar 

  • Jones RT, Walker JH, Stadler H, Whittaker VP (1982a) Immunohistochemical localization of a synaptic vesicle antigen in a cholinergic neuron under conditions of stimulation and rest. Cell Tissue Res 223:117–126

    PubMed  CAS  Google Scholar 

  • Jones RT, Walker JH, Stadler H, Whittaker VP (1982b) Further evidence that glycosaminoglycan specific to cholinergic vesicles recycles during electrical stimulation of the electric organ of Torpedo marmorata. Cell Tissue Res 224:685–688

    Article  PubMed  CAS  Google Scholar 

  • Kiene ML (1986) Charakterisierung eines Proteoglykans acetylcholinspeichernder synaptischer Vesikel und Beiträge zur Dynamik der Vesikel in der Nervenendigung. Dissertation, Göttingen

    Google Scholar 

  • Kiene ML, Stadler H (1987) Synaptic vesicles in electromotoneurones: axonal transport, site of transmitter uptake and processing of a core proteoglycan during maturation. EMBO J 6:2209–2215

    PubMed  CAS  Google Scholar 

  • Krenz WD, Tashiro T, Wächtler K, Whittaker VP (1980) Aspects of the chemical embryology of the electromotor system of Torpedo marmorata with special reference to synaptogenesis. Neuroscience 5:617–624

    Article  PubMed  CAS  Google Scholar 

  • Obrocki J (1987) Localization of Chol-1 in the central nervous system of the rat. In: Dowdall MJ, Hawthorne (eds) Cellular and molecular basis of cholinergic function. Horwood, Chichester, pp 431–435

    Google Scholar 

  • Obrocki J, Borroni E (1988) Immunocytochemical evaluation of a putative cholinergic- specific ganglioside antigen (Chol-1) in the central nervous system of the rat. Exp Brain Res (in press)

    Google Scholar 

  • Osborne NN, Beale R, Nicholas D, Stadler H, Walker JH, Jones RT, Whittaker VP (1982) An antiserum to cholinergic vesicles from Torpedo recognizes nerve terminals in retinas for a variety of species. Cell Mol Neurobiol 2:157–163

    Article  Google Scholar 

  • Richardson PJ (1981) Quantitation of cholinergic synaptosomes from guinea pig brain. J Neurochem 37:258–260

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ (1983) Presynaptic distribution of the cholinergic-specific antigen Chol-1 and 5’-nucleotidase in rat brain, as determined by complement-mediated release of neurotransmitters. J Neurochem 41:640–648

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ (1986) Choline uptake and metabolism in affinity purified cholinergic nerve terminals from rat brain. J Neurochem 46:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 48:622–630

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Walker JH, Jones RT, Whittaker VP (1982) Identification of a cholinergic- specific antigen Chol-1 as a ganglioside. J Neurochem 38:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Siddle H, Luzio JP (1984) Immunoaffinity purification of intact, metabolically active cholinergic nerve terminals from mammalian brain. Biochem J 219:647–654

    PubMed  CAS  Google Scholar 

  • Richardson GP, Rinschen B, Fox GQ (1985) Torpedo electromotor system development: developmentally regulated neuronotrophic activities of electric organ tissue. J Comp Neurol 231:339–352

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Carlson SS, von Wedel RJ, Kelly RB (1979) Antiserum specific for motor nerve terminals in skeletal muscle. Nature 280:403–404

    Article  PubMed  CAS  Google Scholar 

  • Stadler H, Dowe GHC (1982) Identification of a heparan sulfate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata. EMBO J 1:1381–1384

    PubMed  CAS  Google Scholar 

  • Stadler H, Kiene ML (1987) Synaptic vesicles in electromotoneurones: heterogeneity of populations is expressed in uptake properties, exocytosis and insertion of a core proteoglycan into the extracellular matrix. EMBO J 6:2217–2221

    PubMed  CAS  Google Scholar 

  • Volknandt W, Zimmermann H (1986) Acetylcholine, ATP and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47:1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Von Weddel R, Carlson SS, Kelly RB (1981) Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis. Proc Natl Acad Sci USA 78:1014–1018

    Article  Google Scholar 

  • Walker JH, Jones RT, Obrocki J, Richardson GP, Stadler H (1982) Presynaptic plasma membranes and synaptic vesicles of cholinergic nerve endings demonstrated by means of specific antisera. Cell Tissue Res 223:101–116

    Article  PubMed  CAS  Google Scholar 

  • Walker JH, Obrocki J, Zimmermann CW (1983) Identification of a proteoglycan antigen characteristic of cholinergic synaptic vesicles. J Neurochem 41:209–216

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP, Borroni E, Ferretti P, Richardson GP (1985) Cholinergic-specific nerve terminal antigens. In: Reid E (ed) Investigation and exploitation of antibody combining sites. Plenum, New York, pp 189–206 (Methodological surveys in biochemistry and analysis, vol 15)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whittaker, V.P., Borroni, E. (1988). Cholinergic-Specific Antigens. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics