Skip to main content

Model Cholinergic Systems: An Overview

  • Chapter
The Cholinergic Synapse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

Progress in biology is frequently dependent upon and stimulated by the intensive study of particular instances of a more general phenomenon. Such instances are often referred to as experimental model systems. Their usefulness is dependent on such attributes as accessibility, homogeneity and availability in quantity. Our understanding of cholinergic function, in particular, has benefitted from the study of model systems. In this chapter several model cholinergic synapses will be described that have been found particularly useful and will often be mentioned again in later chapters of this book. All have considerable potential for future work. Four of them - the electromotor synapse, the myenteric plexus, the ciliary ganglion and the diaphragm - are peripheral synapses and two are closely related in that the electromotor synapse is a modified neuromuscular junction (NMJ). The two others are central nervous system preparations relatively rich in cholinergic synapses. Of course, many other preparations, such as the perfused heart and the salivary gland might have been included and will also be referred to in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoston DV, Conlon JM (1986) Presence of vasoactive intestinal polypeptide-like immu-noreactivity in the cholinergic electromotor system of Torpedo marmorata. J Neurochem 47:445–453

    Article  PubMed  CAS  Google Scholar 

  • Agoston DV, Shaw C (1988) Presence of GRP-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata (in preparation)

    Google Scholar 

  • Ágoston DV, Kosh JW, Lisziewicz J, Whittaker VP (1985 a) Separation of recycling and reserve synaptic vesicles from the cholinergic nerve terminals of the myenteric plexus of guinea pig ileum. J Neurochem 44:299–305

    Article  PubMed  Google Scholar 

  • Ágoston DV, Ballmann M, Conlon JM, Dowe GHC, Whittaker VP (1985 b) Isolation of neuropeptide-containing vesicles from the guinea pig ileum. J Neurochem 45:398–406

    Article  PubMed  Google Scholar 

  • Ágoston DV, Dowe GHC, Fiedler W, Giompres PE, Roed IS, Walker JH, Whittaker VP, Yamaguchi T (1986) The use of synaptic vesicle proteoglycan as a stable marker in kinetic studies of vesicle recycling. J Neurochem 47:1580–1592

    Article  Google Scholar 

  • Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol (Lond) 235:655–691

    CAS  Google Scholar 

  • Babel-Guérin E (1974) Métabolisme du calcium et libération de l’acétylcholine dans l’organe électrique de la torpille. J Neurochem 23:525–532

    Article  PubMed  Google Scholar 

  • Bacq ZM, Mazza FP (1935) Recherches sur la physiologie et la pharmacologie du système nerveux autonome. XVIII. Isolement de chloroaurate d’acétylcholine à partir d’un extrait de cellules nerveuses d’Octopus vulgaris. Arch Int Physiol 42:43–46

    CAS  Google Scholar 

  • Barker LA, Dowdall MJ, Whittaker VP (1972) Choline metabolism in the cerebral cortex of guinea pig. Biochem J 130:1063–1075

    PubMed  CAS  Google Scholar 

  • Belleroche JD de, Bradford HF (1972) Metabolism of beds of mammalian cortical synap-tosomes: response to depolarizing influences. J Neurochem 19:585–602

    Article  PubMed  Google Scholar 

  • Blackman JC, Ginsborg BL, Ray Y (1963) On the quantal release of the transmitter at a sympathetic synapse. J Physiol (Lond) 167:402–415

    CAS  Google Scholar 

  • Blaustein MP, Goldring JM (1975) Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol (Lond) 247:589–615

    CAS  Google Scholar 

  • Boksa P, Collier B (1980) Spontaneous and evoked release of acetylcholine and a cholinergic false transmitter from brain slices: comparison to true and false transmitter in subcellular stores. Neuroscience 5:1517–1532

    Article  PubMed  CAS  Google Scholar 

  • Boyne AF, Bohan TP, Williams TH (1975) Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminal membranes of Narcine brasiliensis electric organ stimulated to fatigue in vivo. J Cell Biol 67:814–825

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Holman ME (1962) Spontaneous potentials at sympathetic nerve endings in smooth muscle. J Physiol 160:446–460

    PubMed  CAS  Google Scholar 

  • Casamenti F, Pedata F, Corradetti R, Pepeu G (1980) Acetylcholine output from the cerebral cortex, choline uptake and muscarinic receptors in morphine-dependent, freely-moving rats. Neuropharmacology 19:597–605

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP (1975) The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction. J Physiol (Lond) 247:163–168

    CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1972) Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J Cell Biol 54:30–38

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut VP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524

    Article  PubMed  CAS  Google Scholar 

  • Chakrin LW, Marchbanks RM, Mitchell JF, Whittaker VP (1972) Origin of acetylcholine released from the surface of the cortex. J Neurochem 19:2727–2736

    Article  PubMed  CAS  Google Scholar 

  • Dowdall MJ, Simon EJ (1973) Comparative studies on synaptosomes: uptake of [N-Me-3H] choline by synaptosomes from squid optic lobes. J Neurochem 21:969–982

    Article  PubMed  CAS  Google Scholar 

  • Dowdall MJ, Whittaker VP (1973) Comparative studies on synaptosome formation: the preparation of synaptosomes from the head ganglion of the squid Loligo pealii. J Neurochem 20:921–935

    Article  PubMed  CAS  Google Scholar 

  • Dowe GHC, Kilbinger H, Whittaker VP (1980) Isolation of cholinergic synaptic vesicles from the myenteric plexus of guinea-pig small intestine. J Neurochem 35:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Dudel J, Kuffler SW (1961) The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol (Lond) 155:514–529

    CAS  Google Scholar 

  • Dunant Y, Muller D (1986) Quantal release of acetylcholine evoked by depolarization at the Torpedo nerve-electroplaque junction. J Physiol (Lond) 373:461–478

    Google Scholar 

  • Dunant Y, Israël M, Lesbats B, Manaranche R (1977) Oscillation of acetylcholine during nerve activity in the Torpedo electric organ. Brain Res 125:123–140

    Article  PubMed  CAS  Google Scholar 

  • Edwards C, Doležal V, Tuček S, Zemková H, Vyskočil F (1985) Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction? Proc Natl Acad Sci USA 82:3514–3518

    Article  PubMed  CAS  Google Scholar 

  • Fletcher P, Forrester T (1975) The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content. J Physiol (Lond) 251:131–144

    CAS  Google Scholar 

  • Garcia-Segura LM, Muller D, Dunant Y (1986) Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo electroplaque junction. Neuroscience 19:63–79

    Article  PubMed  CAS  Google Scholar 

  • Giompres PE, Whittaker VP (1984) Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling. Biochim Biophys Acta 770: 166–170

    Article  PubMed  CAS  Google Scholar 

  • Giompres PE, Whittaker VP (1986) The density and free water of cholinergic synaptic vesicles as a function of osmotic pressure. Biochim Biophys Acta 882:398–409

    Article  PubMed  CAS  Google Scholar 

  • Haimann C, Torri-Tarelli F, Fesce R, Ceccarelli B (1985) Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. J Cell Biol 101:1953–1965

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membranes during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    Article  PubMed  CAS  Google Scholar 

  • Jonakait GM, Gintzler AR, Gershon MD (1979) Isolation of axonal varicosities (autonomic synaptosomes) from the enteric nervous system. J Neurochem 32: 1387–1400

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1966) Nerve, muscle and synapse. McGraw-Hill, New York

    Google Scholar 

  • Katz B, Miledi R (1963) A study of spontaneous miniature potentials in spinal motoneurones. J Physiol (Lond) 168:389–422

    CAS  Google Scholar 

  • Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–699

    CAS  Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond B 196:59–72

    Article  PubMed  CAS  Google Scholar 

  • Korneliussen H (1972) Ultrastructure of normal and stimulated motor endplates. Z Zellforsch 130:28–57

    Article  PubMed  CAS  Google Scholar 

  • Krenz WD (1985) Morphological and electrophysiological properties of the electromotoneurones of the electric ray Torpedo marmorata in in vivo and in vitro brain slices. Comp Biochem Physiol 82A:59–65

    Article  Google Scholar 

  • Kriebel ME, Florey E (1983) Effect of lanthanum ions on the amplitude distributions of miniature endplate potentials and on synaptic vesicles in frog neuromuscular junctions. Neuroscience 9:535–547

    Article  PubMed  CAS  Google Scholar 

  • Krnjević K, Mitchell JF (1961) The release of acetylcholine in the isolated rat diaphragm. J Physiol (Lond) 155:246–262

    Google Scholar 

  • Kuffler SW, Yoshikama D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol (Lond) 251:465–482

    CAS  Google Scholar 

  • Kuhar MJ, Sethy VH, Roth RH, Aghajanian GK (1973) Choline: selective accumulation by central cholinergic neurons. J Neurochem 20:581–593

    Article  PubMed  CAS  Google Scholar 

  • Kuno M (1964) Quantal components of excitatory synaptic potentials in spinal motoneurones. J Physiol (Lond) 175:81–99

    CAS  Google Scholar 

  • Laverty R, Michaelson IA, Sharman DF, Whittaker VP (1963) The subcellular localization of dopamine and acetylcholine in the dog caudate nucleus. Br J Pharmacol 21:482–490

    CAS  Google Scholar 

  • Luqmani YA, Sudlow G, Whittaker VP (1980) Homocholine and acetylhomocholine: false transmitters in the cholinergic electromotor system of Torpedo. Neuroscience 5:153–160

    Article  PubMed  CAS  Google Scholar 

  • Macintosh FC (1959) Formation, storage and release of acetylcholine at nerve endings. Can J Biochem 37:343–356

    Article  PubMed  CAS  Google Scholar 

  • Macintosh FC, Collier B (1976) Neurochemistry of cholinergic nerve terminals. In: Zaimis E (ed) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 99–228 (Handbook of experimental pharmacology, vol 42)

    Google Scholar 

  • Martin AR, Pilar G (1964) Quantal components of the synaptic potential in the ciliary ganglion of the chick. J Physiol (Lond) 175:1–16

    CAS  Google Scholar 

  • Meunier FM (1984) Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ. J Physiol (Lond) 354:121–137

    CAS  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1980) The effect of lanthanum ions on acetylcholine in frog muscle. J Physiol (Lond) 309:199–214

    CAS  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1982) Free and bound acetylcholine in frog muscle. J Physiol (Lond) 333:189–199

    CAS  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1983) Electrophysiological and chemical determination of acetylcholine release at the frog neuromuscular junction. J Physiol (Lond) 334:245–259

    CAS  Google Scholar 

  • Mitchell JF (1963) The spontaneous and evoked release of acetylcholine from the cerebral cortex. J Physiol (Lond) 165:98–116

    CAS  Google Scholar 

  • Mitchell JF, Silver A (1963) The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol (Lond) 165:117–129

    CAS  Google Scholar 

  • Model PG, Highstein SM, Bennett MVL (1975) Depletion of vesicles and fatigue of transmission at a vertebrate central synapse. Brain Res 98:209–228

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn D (1963) Choline acetylase. In: Koelle GB (ed) Cholinesterases and anticholinesterase agents. Springer, Berlin Göttingen Heidelberg, pp 40–54 (Handbook of experimental pharmacology, vol 15)

    Google Scholar 

  • Nachmansohn D, Weiss MS (1948) Studies on choline acetylase. IV Effect of citric acid. J Biol Chem 172:677–697

    PubMed  CAS  Google Scholar 

  • Ohsawa K, Dowe GHC, Morris SJ, Whittaker VP (1979) The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure. Brain Res 161:447–457

    Article  PubMed  CAS  Google Scholar 

  • Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol (Lond) 194:13–33

    CAS  Google Scholar 

  • Pilar G, Tuttle JB (1982) A simple neuronal system with a range of uses: the avian ciliary ganglion. In: Hanin I, Goldberg AM (eds) Progress in cholinergic biology: model cholinergic synapses. Raven, New York, pp 213–247

    Google Scholar 

  • Potter LT (1970) Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol (Lond) 246:145–166

    Google Scholar 

  • Schwarzenfeld I von (1979) Origin of transmitters released by electrical stimulation from a small, metabolically very active vesicular pool of cholinergic synapses in guinea-pig cerebral cortex. Neuroscience 4:477–493

    Article  Google Scholar 

  • Suszkiw JB (1980) Kinetics of acetylcholine recovery in Torpedo electromotor synapses depleted of synaptic vesicles. Neuroscience 5:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Torri-Tarelli F, Grohovaz F, Fesce R, Ceccarelli B (1985) Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J Cell Biol 101:1386–1399

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Vyskočil F (1979) Changes in total and quantal release of acetylcholine in the mouse diaphragm during activation and inhibition of membrane ATPase. J Physiol (Lond) 286:1–14

    CAS  Google Scholar 

  • Volknandt W, Zimmermann H (1986) Acetylcholine, ATP and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47:1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Weiler M, Roed IS, Whittaker VP (1982) The kinetics of acetylcholine turnover in a resting cholinergic nerve terminal and the magnitude of the cytoplasmic compartment. J Neurochem 38:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1966) The binding of acetylcholine by brain particles in vitro. In: von Euler VS, Rosell S, Uvnas B (eds) Mechanism of release of biogenic amines. Pergamon, Oxford, pp 147–164

    Google Scholar 

  • Whittaker VP (1972) The storage and release of acetylcholine. Biochem J 128:73–74P

    Google Scholar 

  • Whittaker VP (1986) Acetylcholine storage and release. Trends Pharmacol Sci 7:312–315

    Article  CAS  Google Scholar 

  • Whittaker VP, Sheridan MN (1964) The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J Neurochem 12:363–372

    Article  Google Scholar 

  • Whittaker VP, Michaelson IA, Kirkland RJA (1964) The separation of synaptic vesicles from nerve ending particles (‘synaptosomes’). Biochem J 90:293–303

    PubMed  CAS  Google Scholar 

  • Wilson WS, Schulz RA, Cooper JR (1973) The isolation of cholinergic synaptic vesicles from bovine superior cervical ganglion and estimation of their acetylcholine content. J Neurochem 20:659–667

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1979) Vesicle recycling and transmitter release. Neuroscience 4: 1773–1804

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Denston CR (1977) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2:715–730

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Whittaker VP (1974 a) Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J Neurochem 22:435–450

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Whittaker VP (1974 b) Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. J Neurochem 22:1109–1114

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whittaker, V.P. (1988). Model Cholinergic Systems: An Overview. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics