Skip to main content

Intracellular Events During Lymphocyte Activation

  • Chapter
The Pharmacology of Lymphocytes

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 85))

Abstract

The term “lymphocyte activation” has been used interchangeably with lymphocyte transformation, blastogenesis, and mitogenesis. Occasionally, the term indicates only early T lymphocyte events such as volume changes or lymphokine production, but usually it refers to induction of proliferation. In this chapter lymphocyte activation will be used to denote the process that begins with the binding of mitogenic agents or antigens to lymphocyte surface receptors, stimulating the cells to leave the quiescent G0 stage and traverse the G1 and S phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuto O, Reinherz EL (1985) The human T-cell receptor. N Engl J Med 312: 1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Albert F, Hua C, Truneh A, Pierres M, Schmitt-Verhulst A-M (1985) Distinction between antigen receptor and IL 2 receptor triggering events in the activation of alloreactive T cell clones with calcium ionophore and phorbol ester. J Immunol 134: 3649–3655

    PubMed  CAS  Google Scholar 

  • Aldigier JC, Gualde N, Mexmain S, Chable-Rabinovitch H, Ratinaud MH, Rigaud M (1984) Immunosuppression induced in vivo by 15 hydroxyeicosatetraenoic acid (15 HETE). Prostaglandins Leukotrienes Med 13: 99–107

    Article  CAS  Google Scholar 

  • Alford RH (1970) Metal cation requirements for phytohemagglutinin-induced transformation of human peripheral blood lymphocytes. J Immunol 104: 698–703

    PubMed  CAS  Google Scholar 

  • Allan D, Michell RH (1974) Phosphatidylinositol cleavage catalyzed by the soluble fraction from lymphocytes. Biochem J 142: 591–597

    PubMed  CAS  Google Scholar 

  • Allwood G, Asherson GL, Davey MJ, Goodford PJ (1971) The early uptake of radioactive calcium by human lymphocytes treated with phytohemagglutinin. Immunology 21: 509–516

    PubMed  CAS  Google Scholar 

  • Ananthakrishnan R, Coffey RG, Hadden JW (1981) Cyclic GMP and calcium in lymphocyte activation by phytohemagglutinin. Lymphocyte Diff 1: 183–196

    CAS  Google Scholar 

  • Arya SK, Wong-Staal F, Gallo RC (1984) Transcriptional regulation of a tumor promoter and mitogen-inducible gene in human lymphocytes. Mol Cell Bio! 4: 2540–2542

    CAS  Google Scholar 

  • Ashman RF (1984) The influence of cell interactions on early biochemical activation events in human mononuclear cells. Prog Immunol 5: 339–348

    Google Scholar 

  • Atkinson JP, Kelly JP, Weiss A, Wedner JH, Parker CW (1978) Enhanced intracellular cGMP concentrations and lectin-induced lymphocyte transformation. J Immunol 121: 2282–2291

    PubMed  CAS  Google Scholar 

  • Atluru D, Lianos EA, Goodwin JS (1986) Arachidonic acid inhibits 5-lipoxygenase in human T cells. Biochem Biophys Res Commun 135: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Aubry J, Zachowski A, Paraf A, Colombani J (1979) Modulation of membrane-bound enzyme activity by binding of antibodies to major histocompatibility complex antigens. Ann Immunol (Paris) 130C: 17–27

    Google Scholar 

  • Averdunk A, Lauf PK (1975) Effects of mitogens on sodium-potassium transport, 3H-ouabain binding and adenosine triphosphatase activity in lymphocytes. Exp Cell Res 93: 331–342

    Article  PubMed  CAS  Google Scholar 

  • Averdunk R (1972) Über die Wirkung von Phytohemagglutinin und Antilymphozytenserum auf den Kalium-, Glucose-und Aminosäure-Transport bei menschlichen Lymphozyten. Hoppe Seylers Z Physiol Chem 353: 79–87

    Article  PubMed  CAS  Google Scholar 

  • Averdunk R, Gunther T (1986) Protein kinase C in cytosol and cell membrane of concanavalin A-stimulated rat thymocytes. FEBS Lett 195: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Averdunk R, Mueller J, Wenzel B (1976) Studies on the mechanism of activation of lymphocyte membrane ATPase by concanavalin A. J Clin Chem Clin Biochem 14: 339344

    Google Scholar 

  • Bachvaroff RJ, Miller F, Rapoport FT (1984) The role of calmodulin in the regulation of human lymphocyte activation. Cell Immunol 85: 135–153

    Article  PubMed  CAS  Google Scholar 

  • Bailey JM, Bryant RW, Low CE, Pupillo MB, Vanderhoek JY (1982 a) Regulation of T-lymphocyte mitogenesis by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE). Cell Immunol 67: 112–120

    Google Scholar 

  • Bailey JM, Bryant RW, Low CE, Pupillo MB, Vanderhoek JY (1982b) Role of lipoxygenases in regulation of PHA and phorbol ester-induced mitogenesis. Adv Prostaglandin Thromboxane Leukotriene Res 9: 341–353

    CAS  Google Scholar 

  • Bailey JM, Coffey RG, Merritt WD, Hadden JW (1986) Role of eicosanoids in lymphocyte activation: a review. In: Chedid L, Hadden JW, Spreafico F, Dukor P, Willoughby D (eds) Advances in immunopharmacology. vol 3. Pergamon, Oxford, pp 177–188

    Google Scholar 

  • Baran DT, Lichtman MA, Peck WA (1972) Alpha-aminoisobutyric acid transport in human leukemic lymphocytes: in vitro characteristics and inhibition by cortisol and cycloheximide. J Clin Invest 51: 2181–2189

    Article  PubMed  CAS  Google Scholar 

  • Beckner SK, Farrar WL (1986) Interleukin 2 modulation of adenylate cyclase. Potential role of protein kinase C. J Biol Chem 261: 3043–3047

    Google Scholar 

  • Belmont JW, Rich RR (1981) Role of calcium and magnesium and of cytochalasin-sensi- tive processes in lectin-stimulated lymphocyte activation. Cell Immunol 59: 276–288

    Article  PubMed  CAS  Google Scholar 

  • Berger NA, Skinner AM (1974) Characterization of lymphocyte transformation induced by zinc ions. J Cell Biol 61: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Bernard DP, Carboni JM, Waksman BH (1975) Regulation of lymphocyte responses in vitro. VI. Potentiation of the response to phytohemagglutinin by cytochalasin B. Ann Immunol (Paris) 126: 107–120

    Google Scholar 

  • Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360

    PubMed  CAS  Google Scholar 

  • Besterman JM, Tyrey SJ, Cragoe EJ Jr, Cuatrecasas P (1984) Inhibition of epidermal growth factor induced mitogenesis by amiloride and an analog: evidence against a requirement for Na+/H+ exchange. Proc Natl Acad Sci USA 81: 6762–6766

    Article  PubMed  CAS  Google Scholar 

  • Besterman JM, May WS, Levine H, Cragoe EJ, Cuatrecasas P (1985) Amiloride inhibits phorbol ester-stimulated Na+/H+ exchange and protein kinase C. J Biol Chem 260: 1155–1159

    PubMed  CAS  Google Scholar 

  • Betel I, Martijnse J (1976) Drugs that disrupt microtubuli do not inhibit lymphocyte activation. Nature 261: 318–319

    Article  PubMed  CAS  Google Scholar 

  • Betel I, Martijnse J, van den Berg KJ (1974) Absence of an early increase of phospholipid-phosphate turnover in mitogen stimulated B lymphocytes. Cell Immunol 14: 429–434

    Article  PubMed  CAS  Google Scholar 

  • Birx DL, Berger M, Fleisher TA (1984) The interference of T cell activation by calcium blocking agents. J Immunol 133: 2904–2909

    PubMed  CAS  Google Scholar 

  • Blitstein-Willinger E, Diamantstein T (1978) Inhibition by isoptin (a calcium antagonist) of the mitogenic stimulation of lymphocytes prior to the S-phase. Immunology 34: 303–308

    PubMed  CAS  Google Scholar 

  • Bloom FE, Wedner H, Parker CW (1973) The use of antibodies to study cell structure and metabolism. Pharmacol Rev 25: 343–358

    PubMed  CAS  Google Scholar 

  • Bomboy JD Jr, Graber SE (1980) Stimulation of cyclic 3’:5’-guanosine monophosphate levels in rat spleen cells by lipopolysaccharide preparations. J Lab Clin Med 95: 654–659

    PubMed  CAS  Google Scholar 

  • Boon AM, Beresford BJ, Mellors A (1985) A tumor promoter enhances the phosphorylation of polyphosphoinositides while decreasing phosphatidylinositol labeling in lymphocytes. Biochem Biophys Res Commun 129: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Borghetti AF, Kay JE, Wheeler KP (1979) Enhanced transport of natural amino acids after activation of pig lymphocytes. Biochem J 182: 27–32

    PubMed  CAS  Google Scholar 

  • Bougnoux P, Bonvini E, Chang ZL, Hoffman T (1983) Effect of interferon on phospholipids methylation by peripheral blood mononuclear cells. J Cell Biochem 20: 215–224

    Article  Google Scholar 

  • Bourguignon LYW, Hsing Y-C (1983) The participation of adenylate cyclase in lympho-cyte capping. Biochem Biophys Acta 728: 186–190

    Article  PubMed  CAS  Google Scholar 

  • Bray MA, Powell RG, Lydyard PM (1981) Prostaglandin generation by separated human blood mononuclear cell fractions. Int J Immunopharmacol 3: 377–381

    Article  PubMed  CAS  Google Scholar 

  • Brock JH (1981) The effect of iron and transferrin on the response of serum-free cultures of mouse lymphocytes to concanavalin A and LPS. Immunology 43: 387–392

    PubMed  CAS  Google Scholar 

  • Brock JH, Rankin C (1981) Transferrin binding and iron uptake by mouse lymph node cells during transformation in response to concanavalin A. Immunology 43: 393–398

    PubMed  CAS  Google Scholar 

  • Brock JH, Mainou-Fowler T (1983) The role of iron and transferrin in lymphocyte trans-formation. Immunol Today 4: 347–351

    Article  CAS  Google Scholar 

  • Bryant RW, Schewe T, Rapoport SM, Bailey JM (1985) Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. J Biol Chem 260: 3548–3555

    PubMed  CAS  Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309: 63–65

    Article  PubMed  CAS  Google Scholar 

  • Burleson DG, Sage HJ (1976) Effect of lectins on the levels of cAMP and cGMP in guinea pig lymphocytes: early responses of lymph node cells to mitogenic and non-mitogenic lectins. J Immunol 116: 696–703

    PubMed  CAS  Google Scholar 

  • Butman BT, Jacobsen T, Cabatu OG, Bourguignon LYW (1981) The involvement of cAMP in lymphocyte capping. Cell Immunol 61: 397–403

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Klimpel GR, Lucas DO, Russell DH (1977) Type I and type II cyclic AMP-dependent protein kinase as opposite effectors of lymphocyte mitogenesis. Nature 268: 63–64

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Klimpel GR, Lucas DO, Russell DH (1978) Ornithine decarboxylase induction in mitogen-stimulated lymphocytes is related to the specific activation of type I adenosine cyclic 3’,5’-monophosphate-dependent protein kinase. Mol Pharmacol 14: 431–441

    PubMed  CAS  Google Scholar 

  • Cambier J, Monroe JG, Coggeshall KM, Ransom JT (1985) The biochemical basis of transmembrane signalling by lymphocyte-B surface immunoglobulin. Immunol Today 6: 218–222

    Article  CAS  Google Scholar 

  • Cantrell DA, Smith KA (1984) The interleukin-2 T-cell system: a new cell growth model. Science 224: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Carpentieri U, Minguell JJ, Haggard ME (1980 a) Variation of activity of protein kinase in unstimulated and phytohemagglutinin-stimulated normal and leukemic human lymphocytes. Cancer Res 40: 2714–2718

    Google Scholar 

  • Carpentieri U, Monahan TM, Gustayson LP (1980 b) Observations on the level of cyclic nucleotides in three populations of human lymphocytes in culture. J Cyclic Nucleotide Res 6: 253–260

    Google Scholar 

  • Carpentieri U, Minguell JL, Gardner FH (1981) Adenylate cyclase and guanylate cyclase activity in normal and leukemic human lymphocytes. Blood 57: 975–978

    PubMed  CAS  Google Scholar 

  • Casnellie JE, Lamberts RJ (1986) Tumor promoters cause changes in the state of phosphorylation and apparent molecular weight of a tyrosine protein kinase in T lymphocytes. J Biol Chem 261: 4921–4925

    PubMed  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257: 7847–7851

    PubMed  CAS  Google Scholar 

  • Chambers DA, Martin DW Jr, Weinstein Y (1974) The effect of cyclic nucleotides on purine biosynthesis and the induction of PRPP synthetase during lymphocyte activation. Cell 3: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160: 369–385

    Article  PubMed  CAS  Google Scholar 

  • Chaplin DD, Wedner HJ, Parker CW (1979) Protein phosphorylation in human peripheral blood lymphocytes. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins. Biochem J 182: 537–546

    Google Scholar 

  • Chaplin DD, Wedner HJ, Parker CW (1980) Protein phosphorylation in human peripheral blood lymphocytes: mitogen-induced increases in protein phosphorylation in intact lymphocytes. J Immunol 124: 2390–2398

    PubMed  CAS  Google Scholar 

  • Chen S-HS (1979) Relationship between phosphatidylcholine biosynthesis and cellular commitment in concanavalin A-stimulated lymphocytes. Exp Cell Res 121: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Cheung RK, Grinstein S, Gelfand EW (1983) Permissive role of calcium in the inhibition of T cell mitogenesis by calmodulin antagonists. J Immunol 131: 2291–2294

    PubMed  CAS  Google Scholar 

  • Chien MM, Ashman RF (1983) Phospholipid synthesis by activated human B lympho-cytes. J Immunol 130: 2568–2573

    PubMed  CAS  Google Scholar 

  • Chouaib S, Welte K, Mertelsmann R, Dupont B (1985) Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down-regulation of transferrin receptor expression. J Immunol 135: 1172–1179

    PubMed  CAS  Google Scholar 

  • Coffey RG (1977) Assays for cyclic nucleotides including clinical applications. In: Hadden J, Coffey R, Spreafico F (eds) Immunopharmacology. Plenum, New York, pp 389412

    Google Scholar 

  • Coffey RG (1986) Phosphatidylserine and phorbol myristate acetate stimulation of human lymphocyte guanylate cyclase. Int J Biochem 18: 665–670

    Article  PubMed  CAS  Google Scholar 

  • Coffey RG, Hadden JW (1981 a) Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase. Biochem Biophys Res Commun 101: 584–590

    Google Scholar 

  • Coffey RG, Hadden JW ( 1981 b) Arachidonate and metabolites in mitogen activation of lymphocyte guanylate cyclase. In: Hadden J, Chedid L, Spreafico R, Mullen P (eds) Advances in immunopharmacology. Pergamon, Oxford, pp 365–373

    Google Scholar 

  • Coffey RG, Hadden JW (1983 a) Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase and cyclic guanosine 3’,5’-monophosphate phosphodiesterase and reduction of adenylate cyclase. Cancer Res 43: 150–158

    Google Scholar 

  • Coffey RG, Hadden JW ( 1983 b) Calcium and guanylate cyclase in lymphocyte activation. In: Chedid L, Hadden J, Willoughby A (eds) Advances in Immunopharmacology, vol 2. Pergamon, Oxford, pp 87–94

    Google Scholar 

  • Coffey RG, Hadden JW (1985 a) Neurotransmitters, hormones, and cyclic nucleotides in lymphocyte regulation. Fed Proc 44: 112–117

    Google Scholar 

  • Coffey RG, Hadden JW ( 1985 b) Stimulation of lymphocyte guanylate cyclase by HETEs. In: Bailey JM (ed) Prostaglandins, leukotrienes, and lipoxins: biochemistry, mechanism of action, and clinical applications. Plenum, New York, pp 501–509

    Google Scholar 

  • Coffey RG, Hadden EM, Hadden JW (1977) Evidence for cyclic GMP and calcium mediation of lymphocyte activation by mitogens. J Immunol 119: 1387–1394

    PubMed  CAS  Google Scholar 

  • Coffey RG, Hadden EM, Hadden JW (1981) Phytohemagglutinin stimulation of guanylate cyclase in human lymphocytes. J Biol Chem 256: 4418–4424

    PubMed  CAS  Google Scholar 

  • Coffey RG, Hartley L, Poison JB, Krzanowski JJ, Hadden JW (1984) Selective inhibition by NPT 15392 of lymphocyte cyclic GMP phosphodiesterase. Biochem Pharmacol 33: 3411–3417

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall KM, Cambier JC (1985) B cell activation. VI. Effects of exogenous diglyceride and modulators of phospholipid metabolism suggest a central role for diacylglycerol generation in transmembrane signaling by mIg. J Immunol 134: 101–107

    Google Scholar 

  • Cooper HL, Braverman R (1981) Close correlation between initiator methionyl-tRNA level and rate of protein synthesis during human lymphocyte growth cycle. J Biol Chem 256: 7461–7467

    PubMed  CAS  Google Scholar 

  • Cooper HL, Lester EP (1982) Nuclear activation and regulation of lymphocyte protein synthesis. In: Hadden J, Chedid L, Dukor P, Willoughby P (eds) Advances in immunopharmacology, vol 2, Pergamon, New York, pp 95–100

    Google Scholar 

  • Cox TM, O’Donnell MW, Aisen P, London IM (1985) Hemin inhibits internalization of transferrin by reticulocytes and promotes phosphorylation of the membrane transfer-rin receptor. Proc Natl Acad Sci USA 82: 5170–5174

    Article  PubMed  CAS  Google Scholar 

  • Cross ME, Ord MG (1971) Changes in histone phosphorylation and associated early metabolic events in pig lymphocyte cultures transformed by phytohaemagglutinin or 6N,2’-O-dibutyryladenosine 3’,5’-cyclic monophosphate. Biochem J 124: 241–248

    PubMed  CAS  Google Scholar 

  • Crumpton MJ, Auger J, Green NM, Maino VC (1976) Surface membrane events following activation by lectins and calcium ionophore. In: Oppenheim JJ, Rosenstreich DL (eds) Mitogens in immunobiology. Academic, New York, pp 85–101

    Google Scholar 

  • Cupps TR, Gerrard TL, Falkoff RJM, Whalen G, Fauci AS (1985) Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J Clin Invest 75: 754–761

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert JA, Shay JW (1983) Microtubules and lymphocyte responses: effects of colchicine and taxol on mitogen-induced human lymphocyte activation and proliferation. J Cell Physiol 116: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Dasch JR, Stavitsky AB (1985) Mitogen-induced phosphorylation of cytosolic proteins in rabbit T- and B-lymphocytes. Mol Immunol 22: 379–390

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ, Czech MP (1985) Amiloride directly inhibits growth factor receptor tyrosine kinase activity. J Biol Chem 260: 2543–2551

    PubMed  CAS  Google Scholar 

  • Dawson AP, Irvine RF (1984) Inositol (1,4,5) triphosphate-promoted Ca’ release from microsomal fractions of rat liver. Biochem Biophys Res Commun 120: 858–864

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307: 465–468

    Article  PubMed  CAS  Google Scholar 

  • Degen JL, Neubauer MG, Degen SJF, Seyfrie CE, Morris DR (1983) Regulation of protein synthesis in mitogen-activated bovine lymphocytes. Analysis of active-specific and total mRNA accumulation and utilization. J Biol Chem 258: 12153–12162

    Google Scholar 

  • DeLaclos BF, Braquet P, Borgeat P (1984) Characteristics of leukotriene and HETE synthesis in human leukocytes in vitro. Effect of arachidonic acid concentration. Prostaglandins Leukotrienes Med 13: 47–52

    Google Scholar 

  • Depper JM, Leonard WJ, Kronke M, Noguchi PD, Cunningham RE, Waldmann TA, Greene WC (1984) Regulation of interleukin 2 receptor expression: effects of phorbol diester, phospholipase C, and reexposure to lectin or antigen. J Immunol 133: 3054–3060

    PubMed  CAS  Google Scholar 

  • DeRubertis FR, Zenser T (1976) Activation of murine lymphocytes by cyclic guanosine 3’,5’-monophosphate: specificity and role in mitogen action. Biochim Biophys Acta 428: 91–103

    Article  PubMed  CAS  Google Scholar 

  • DeRubertis FR, Zenser TV, Adler WH, Hudson T (1974) Role of cyclic adenosine 3’,5’monophosphate in lymphocyte mitogenesis. J Immunol 113: 151–161

    PubMed  CAS  Google Scholar 

  • Deutsch C, Price MA (1982) Cell calcium in human peripheral blood lymphocytes and the effect of mitogen. Biochim Biophys Acta 687: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Deutsch C, Taylor JS, Wilson DF (1982) Regulation of intracellular pH by human periph-eral blood lymphocytes as measured by 19F NMR. Proc Natl Acad Sci USA 79:7944–7948

    Google Scholar 

  • Deviller P, Cille Y, Betuel J (1975) Guanyl cyclase activity of human blood lymphocytes. Enzyme 19: 300–313

    PubMed  CAS  Google Scholar 

  • Diamantstein T, Ulmer A (1975) Regulation of DNA synthesis by guanosine-5’-diphosphate, cyclic guanosine-3’,5’-monophosphate, and cyclic adenosine-3’,5’-monophosphate in mouse lymphoid cells. Exp Cell Res 93: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA, Bishai I, Rosenwasser LJ, Coceani F (1984) The influence of lipoxygenase inhibitors on the in vitro production of human leukocytic pyrogen and lymphocyte activating factor (interleukin-1). Int J Immunopharmacol 6: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Dobson P, Mellors A (1980) Inhibition of acyltransferase in lymphocytes by concanavalin A. Biochim Biophys Acta 629: 305–316

    Article  PubMed  CAS  Google Scholar 

  • Dornand J, Reminiac C, Mani J-C (1978) Studies of (Na + + K+) sensitive ATPase activity in pig lymphocytes. Effects of concanavalin A. Biochim Biophys Acta 509: 194–200

    Google Scholar 

  • Earp HS, Utsinger PD, Yount WJ, Logue M, Steiner AL (1977) Lymphocyte surface modulation and cyclic nucleotides. J Exp Med 145: 1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Earp HS, Austin KS, Buessow SC, Dy R, Gillespie GY (1984) Membranes from T and B lymphocytes have different patterns of tyrosine phosphorylation. Proc Natl Acad Sci USA 81: 2347–2351

    Article  PubMed  CAS  Google Scholar 

  • Earp HS, Austin KS, Gillespie GY, Buessow SC, Davies AA, Parker PJ (1985) Characterization of distinct tyrosine-specific protein kinases in B and T lymphocytes. J Biol Chem 260: 4351–4356

    PubMed  CAS  Google Scholar 

  • Edelman GM (1976) Surface modulation in cell recognition and cell growth. Science 194: 218–226

    Article  Google Scholar 

  • Efrat S, Kaempfer R (1984) Control of biologically active interleukin 2 messenger RNA formation in induced human lymphocytes. Proc Natl Acad Sci USA 81: 2601–2605

    Article  PubMed  CAS  Google Scholar 

  • Enyedi A, Farago A, Sarkadi B, Szasz I, Gardos G (1983) Cyclic AMP-dependent protein kinase stimulates the formation of polyphosphoinositides in the plasma membrane of different blood cells. FEBS Lett 161: 158–162

    Article  PubMed  CAS  Google Scholar 

  • Epstein P, Mills J, Ross C, Strada S, Hersh E, Thompson W (1977) Increased cyclic nucleotide phosphodiesterase activity associated with proliferation and cancer in human and murine lymphoid cells. Cancer Res 37: 4016–4023

    PubMed  CAS  Google Scholar 

  • Farago A, Hasznos P, Antoni F, Romhanji T (1978) Two types of cyclic GMP binding site associated with the cyclic AMP-dependent protein kinase from lymphocytes. Biochim Biophys Acta 538: 493–504

    Article  PubMed  CAS  Google Scholar 

  • Farese RV, Orchard JL, Larson RE, Sabir MA, Davis JS (1985) Phosphatidylinositol hydrolysis and phosphatidylinositol-4,5-bisphosphate hydrolysis are separable responses during secretagogue action in the rat pancreas. Biochim Biophys Acta 846: 296–304

    Article  PubMed  CAS  Google Scholar 

  • Farrar WL, Anderson WB (1985) Interleukin-2 stimulates association of protein kinase C with plasma membranes. Nature 315: 233–235

    Article  PubMed  CAS  Google Scholar 

  • Farrar WL, Humes JL (1985) The role of arachidonic acid metabolism in the activities of interleukin 1 and 2. J Immunol 135: 1153–1159

    PubMed  CAS  Google Scholar 

  • Farrar WL, Taguchi M (1985) Interleukin-2 stimulation of protein kinase C membrane as-sociation: evidence for IL-2 receptor phosphorylation. Lymphokine Res 4:87–94

    PubMed  CAS  Google Scholar 

  • Farrar WL, Ruscetti FW (1986) Association of protein kinase C activation with IL 2 re-ceptor expression. J Immunol 136: 1266–1273

    PubMed  CAS  Google Scholar 

  • Farrar WL, Cleveland JL, Beckner SK, Bonvini E, Evans SW (1986) Biochemical and molecular events associated with interleukin 2 regulation of lymphocyte proliferation. Immunol Rev 92: 67–80

    Article  Google Scholar 

  • Fechheimer M, Cebra JJ (1982) Phosphorylation of lymphocyte myosin catalyzed in vitro and in intact cells. J Cell Biol 93: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Felber SM, Brand MD (1983) Early plasma-membrane potential changes during stimulation of lymphocytes by concanavalin A. Biochem J 210: 885–891

    PubMed  CAS  Google Scholar 

  • Ferber E, DePasquale GG, Resch K (1975) Phospholipid metabolism of stimulated lymphocytes: composition of phospholipid fatty acids. Biochim Biophys Acta 398: 364–376

    PubMed  Google Scholar 

  • Ferguson RM, Schmidtke JR, Simmons RL (1975) Concurrent inhibition by chlorpromazine of concanavalin A-induced lymphocyte aggregation and mitogenesis. Nature 256: 744–745

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein N, Sahai A, Anderson WB, Salomon DS, Cooper HL (1984) Differential phosphorylation events associated with phorbol ester effects on acceleration versus inhibition of cell growth. Cancer Res 44: 5227–5233

    PubMed  CAS  Google Scholar 

  • Feuerstein N, Monod D, Cooper HL (1985) Phorbol ester effect in platelets, lymphocytes, and leukemic cells (HL-60) is associated with enhanced phosphorylation of class 1 HLA antigens: coprecipitation of myosin light chain. Biochem Biophys Res Commun 126: 206–213

    Article  PubMed  CAS  Google Scholar 

  • Fillingame RH, Morris DR (1973) Accumulation of polyamines and its inhibition by methyl glyoxol bis-(guanylhydrazone) during lymphocyte transformation. In: Russell DH (ed) Polyamines in normal and neoplastic growth. Raven, New York, pp 249–260

    Google Scholar 

  • Fischer A, LeDeist F, Durandy A, Griscelli C (1985) Separation of a population of human T lymphocytes that bind prostaglandin E2 and exert a suppressor activity J Immunol 134: 815–819

    CAS  Google Scholar 

  • Fischer S, Fagard R, Gacon G, Genetet N, Piau JP, Blaineau C (1984) Stimulation of tyrosine phosphorylation in lectin-treated human lymphocytes. Biochem Biophys Res Commun 124: 682–689

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Mueller GC (1968) An early alteration in the phospholipid metabolism of lymphocytes by PHA. Proc Natl Acad Sci USA 60: 1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Mueller GC (1969) The stepwise acceleration of phosphatidylcholine synthesis in PHA-treated lymphocytes. Biochim Biophys Acta 176: 316–323

    PubMed  CAS  Google Scholar 

  • Fisher DB, Mueller GC (1971 a) Gamma-hexachlorocyclohexane inhibits the initiation of lymphocyte growth by phytohaemagglutinin. Biochem Pharmacol 20: 2515–2518

    Google Scholar 

  • Fisher DB, Mueller GC (1971 b) Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes. Biochim Biophys Acta 248: 434–448

    Google Scholar 

  • Fleisher TA, Birx DL (1985) The role of calcium in IL-2 dependent proliferation. Fed Proc 44: 1309

    Google Scholar 

  • Freedman MH (1979) Early biochemical events in lymphocyte activation. Cell Immunol 44: 290–313

    Article  PubMed  CAS  Google Scholar 

  • Freedman MH, Raff MC, Gomperts B (1975) Induction of increased calcium uptake in mouse T-lymphocytes by concanavalin-A and its modulation by cyclic nucleotides. Nature 255: 378–382

    Article  PubMed  CAS  Google Scholar 

  • Freedman MH, Khan NR, Frew-Marshall BJ, Cupples CG, Mely-Goubert B (1981) Early biochemical events in lymphocyte activation. Cell Immunol 58: 134–146

    Article  PubMed  CAS  Google Scholar 

  • Friedman H, Kateley JR (1974) Enhanced splenic ATPase activity in immunized mice. Proc Soc Exp Biol Med 147: 460–463

    PubMed  CAS  Google Scholar 

  • Geahlen RL, Harrison ML (1984) Induction of a substrate for casein kinase II during lymphocyte mitogenesis. Biochim Biophys Acta 804: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Gelfand EW, Cheung RK, Grinstein S (1984) Role of membrane potential in the regulation of lectin-induced calcium uptake. J Cell Physiol 121: 533–539

    Article  PubMed  CAS  Google Scholar 

  • Gelfand EW, Cheung RK, Mills GB, Grinstein S (1985) Mitogens trigger a calcium-independent signal for proliferation in phorbol-ester-treated lymphocytes. Nature 315: 419420

    Google Scholar 

  • Gerson DF, Kiefer H (1982) High intracellular pH accompanies mitotic activity in murine lymphocytes. J Cell Physiol 112: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Gerson DF, Kiefer H, Eufe W (1982) Intracellular pH of mitogen-stimulated lymphocytes. Science 216: 1009–1010

    Article  PubMed  CAS  Google Scholar 

  • Gery I, Eidinger D (1977) Selective opposing effects of cytochalasin B and other drugs on lymphocyte responses to different doses of mitogens. Cell Immunol 30: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Gerzer R, Brash AR, Hardman JG (1986) Activation of a soluble guanylate cyclase by ara- chidonic acid and 15-lipoxygenase products. Biochim Biophys Acta 886: 383–389

    Article  PubMed  CAS  Google Scholar 

  • Gilbert KM, Hoffmann MK (1985) cAMP is an essential signal in the induction of anti-body production by B cells but inhibits helper function of T cells. J Immunol 135:2084–2089

    Google Scholar 

  • Gillis S, Smith KA (1977) Long term culture of tumor-specific cytotoxic T cells. Nature 268: 154–156

    Article  PubMed  CAS  Google Scholar 

  • Glasgow A, Polgar P, Saporoschetq I, Kim H, Rutenberg AM, Mannick JA, Cooperband SR (1975) Phytohemagglutinin stimulation of human lymphocytes: failure to detect an early increase in cyclic AMP concentration. Clin Immunol Immunopathol 3: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Goetzl EJ (1981) Selective feed-back inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes. Biochem Biophys Res Commun 101: 344–350

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46: 823–896

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, O’Dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3: 155–223

    CAS  Google Scholar 

  • Goldberg ND, Graff G, Haddox MK, Stephenson JH, Glass DB, Moser ME (1978) Redox modulation of splenic cell soluble guanylate cyclase activity: activation by hydrophilic and hydrophobic oxidants represented by ascorbic and dehydroascorbic acids, fatty acid hydroperoxides and prostaglandin endoperoxides. Adv Cyclic Nucleotide Res 9: 101–130

    PubMed  CAS  Google Scholar 

  • Goldyne ME, Stobo JD (1982) Human monocytes synthesize eicosanoids from T lymphocyte-derived arachidonic acid. Prostaglandins 24: 623–630

    Article  PubMed  CAS  Google Scholar 

  • Goldyne ME, Burrish GF, Poubelle P, Borgeat P (1984) Arachidonic acid metabolism among human mononuclear leukocytes. Lipoxygenase-related pathways. J Biol Chem 259: 8815–8819

    Google Scholar 

  • Goodman MG, Weigle WO (1983) T cell-replacing activity of C8-derivatized guanine ribonucleosides. J Immunol 130: 2042–2044

    PubMed  CAS  Google Scholar 

  • Goodwin JS (1986) Role of leukotriene B4 in T cell activation. Transplant Proc [Supp14] 18: 49–51

    CAS  Google Scholar 

  • Goodwin JS, Bankhurst AD, Messner RP (1977) Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell. J Exp Med 146: 1719–1734

    Google Scholar 

  • Goodwin JS, Gualde N, Aldigier J, Rigaud M, Vanderhoek JY (1984) Modulation of Fcy receptors on T cells and monocytes by 15-hydroperoxyeicosatetraenoic acids. Prostaglandins Leukotrienes Med 13: 109–112

    Article  CAS  Google Scholar 

  • Gordon D, Nouri AME, Thomas RU (1981) Selective inhibition of thromboxane biosynthesis in human blood mononuclear cells and the effects on mitogen-stimulated lymphocyte proliferation. Eur J Pharmacol 74: 469–476

    CAS  Google Scholar 

  • Graff G, Stephenson JH, Glass DB, Haddox MK, Goldberg D (1978) Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. J Biol Chem 253: 7662–7676

    PubMed  CAS  Google Scholar 

  • Greene WC, Parker CW (1975) A role for cytochalasin-sensitive proteins in the regulation of calcium transport in activated human lymphocytes. Biochem Biophys Res Commun 65: 456–463

    Article  PubMed  CAS  Google Scholar 

  • Greene WC, Parker CM, Parker CW (1976 a) Calcium and lymphocyte activation. Cell Immunol 25: 74–89

    Google Scholar 

  • Greene WC, Parker CM, Parker CW (1976 b) Opposing effects of mitogenic and nonmitogenic lectins on lymphocyte activation. J Biol Chem 251: 4017–4025

    Google Scholar 

  • Greene WC, Parker CM, Parker CW (1976 c) Cytochalasin sensitive structures and lymphocyte activation. Exp Cell Res 103: 109–118

    Google Scholar 

  • Greene WC, Parker CM, Parker CW (1976 d) Colchicine-sensitive structures and lymphocyte activation. J Immunol 117: 1015–1022

    Google Scholar 

  • Grinstein S, Cohen S, Lederman HM, Gelfand EW (1984) The intracellular pH of quies- cent and proliferating human and rat thymic lymphocytes. J Cell Physiol 121: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Grinstein S, Cohen S, Goetz JD, Rothstein A (1985 a) Osmotic and phorbol ester-induced activation of Na+/H+ exchange: possible role of protein phosphorylation in lymphocyte volume regulation. J Cell Biol 101: 269–276

    Google Scholar 

  • Grinstein S, Cohen S, Goetz JD, Rothstein A, Gelfand EW (1985 b) Characterization of the activation of Na +/H+ exchange in lymphocytes by phorbol esters: change in cytoplasmic pH dependence of the antiport. Proc Natl Acad Sci USA 82: 1429–1433

    Google Scholar 

  • Grupp SA, Harmony JAK (1985) Increased phosphatidylinositol metabolism is an important but not an obligatory early event in B lymphocyte activation. J Immunol 134: 4087–4094

    PubMed  CAS  Google Scholar 

  • Gualde N, Chabel-Rabinovitch H, Motta C, Durand J, Beneytout JL, Rigaud M (1983) Hydroperoxyeicosatetraenoic acids: potent inhibitors of lymphocyte responses. Biochim Biophys Acta 750: 429–433

    PubMed  CAS  Google Scholar 

  • Gualde N, Atluru D, Goodwin JS (1985 a) Effect of lipoxygenase metabolites of arachidonic acid on proliferation of human T cells and T cell subsets. J Immunol 134: 1125 1128

    Google Scholar 

  • Gualde N, Rigaud M, Goodwin JS (1985 b) Induction of suppressor cells from peripheral blood T cells by 15-hydroperoxyeicosatetraenoic acid (15-HPETE). J Immunol 135: 3424–3429

    Google Scholar 

  • Gunther GR, Wang JL, Edelman GM (1976) Kinetics of colchicine inhibition of mitogenesis in individual lymphocytes. Exp Cell Res 98: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (1979) Subpopulations of human T lymphocytes. XII. In vitro effects of agents modifying intracellular levels of cyclic nucleotides on T cells with receptors for IgM (Ty), IgG (Ty), or IgA (Ta). J Immunol 123: 2664–2668

    Google Scholar 

  • Gutowski JK, Mukherji B, Cohen S (1984) The role of cytoplasmic intermediates in IL2-induced T cell growth. J Immunol 133: 3068–3074

    PubMed  CAS  Google Scholar 

  • Guy GR, Gordan J, Walker L, Michell RH, Brown G (1986) Redistribution of protein kinase C during mitogenesis of human B lymphocytes. Biochem Biophys Res Commun 135: 146–153

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW (1977) Cyclic nucleotides in lymphocyte proliferation and differentiation. In: Hadden JW, Coffey RG, Spreafico F (eds) Immunopharmacology. Plenum, New York, pp 1–28

    Google Scholar 

  • Hadden JW, Coffey RC (1982) Cyclic nucleotides in mitogen induced lymphocyte proliferation. Immunol Today 3: 299–304

    Article  CAS  Google Scholar 

  • Hadden JW, Hadden EM, Good RA (1971) Alpha adrenergic stimulation of glucose uptake in the human erythrocyte, lymphocyte, and lymphoblast. Exp Cell Res 68: 217–219

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW, Hadden EM, Haddox MK, Goldberg ND (1972) Guanosine 3’,5’-cyclic monophosphate: a possible intracellular mediator of mitogen influences in lymphocytes. Proc Natl Acad Sci USA 69: 3024–3027

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW, Johnson EM, Hadden EM, Coffey RG, Johnson LD (1975) Cyclic GMP and lymphocyte activation. In: Rosenthal A (ed) Immune recognition. Academic, New York, pp 359–389

    Google Scholar 

  • Hadden JW, Hadden EM, Sadlik JR, Coffey RG (1976) Effects of concanavalin A and a succinylated derivative on lymphocyte proliferation and cyclic nucleotide levels. Proc Natl Acad Sci USA 73: 1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Haddox MK, Furcht LT, Gentry SR, Moser ME, Stephenson JH, Goldberg ND (1976) Periodate-induced increase in cyclic GMP in mouse and guinea pig splenic cells in association with mitogenesis. Nature 262: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Haddox MK, Stephenson JH, Moser ME, Goldberg ND (1978) Oxidative-reductive modulation of guinea pig splenic cell guanylate cyclase activity. J Biol Chem 253: 3143–3152

    PubMed  CAS  Google Scholar 

  • Hall DJ, O’Leary JJ, Rosenberg A (1982) Commitment and proliferation kinetics of human lymphocytes stimulated in vitro: effects of colchicine on mitogen response. J Cell Physiol 112: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Hamilton TA (1982) Regulation of transferrin receptor expression in concanavalin A stim-ulated and gross virus transformed rat lymphoblasts. J Cell Physiol 113: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Hamilton TA (1983) Receptor-mediated endocytosis and exocytosis of transferrin in con-canavalin A-stimulated rat lymphocytes. J Cell Physiol 114: 222–228

    Article  PubMed  CAS  Google Scholar 

  • Hansson A, Serhan CN, Haeggstrom J, Ingelman-Sundberg M, Samuelsson B, Morris J (1986) Activation of protein kinase C by lipoxin A and other eicosanoids: intracellular action of oxygenation products of arachidonic acid. Biochem Biophys Res Commun 134: 1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Harrison ML, Low PS, Geahlen RL (1984) T and B lymphocytes express distinct tyrosine protein kinases. J Biol Chem 259: 9348–9350

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki H, Sasaki T (1981) Phytomitogen-induced stimulation of synthesis de novo of Ptdlns, phosphatidic acid and diacylglycerol in rat and human lymphocytes. Biochim Biophys Acta 666: 252–258

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki H, Sasaki T (1982) Rapid breakdown of Ptdlns accompanied by accumulation of phosphatidic acid and diacylglycerol in rat lymphocytes. J Biochem 91: 463–468

    PubMed  CAS  Google Scholar 

  • Hasegawa-Sasaki H, Sasaki T (1983) Phytohemagglutinin induces rapid degradation of phosphatidyl-inositol-4,5-bis-phosphate and transient accumulation of phosphatidic acid and diacylglycerol in a human T-lymphoblastoid cell line, CCRF-CEM. Biochim Biophys Acta 754: 305–314

    Google Scholar 

  • Hausen P, Stein H (1968) On the synthesis of RNA in lymphocytes stimulated by phytohemagglutinin. Eur J Biochem 4: 401–406

    Article  PubMed  CAS  Google Scholar 

  • Hausen P, Stein H, Peters H (1969) On the synthesis of RNA in lymphocytes stimulated by phytohemagglutinin. Eur J Biochem 9: 542–549

    Article  PubMed  CAS  Google Scholar 

  • Heidrick ML (1973) Imbalanced cyclic-AMP and cyclic-GMP levels in concanavalin-A stimulated spleen cells from aged mice. J Cell Biol 59: 139a

    Google Scholar 

  • Hesketh TR, Smith GA, Moore JP, Taylor MV, Metcalfe JC (1983 a) Limits to the early increase in free cytoplasmic calcium concentrations during the mitogenic stimulation of lymphocytes. Biochem J 212: 685–690

    Google Scholar 

  • Hesketh TR, Smith GA, Moore JP, Taylor MV, Metcalfe JC (1983 b) Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem 258: 4876–4882

    Google Scholar 

  • Hesketh TR, Moore JP, Morris DH, Taylor MV, Rogers J, Smith GA, Metcalfe JC (1985) A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313: 481–484

    Article  PubMed  CAS  Google Scholar 

  • Hidaka H, Asano T (1977) Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc Natl Acad Sci USA 74: 3657–3661

    Article  PubMed  CAS  Google Scholar 

  • Hirata F, Axelrod J (1980) Phospholipid methylation and biological signal transmission. Science 209: 1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Hirata F, Toyoshima S, Axelrod J, Waxdal MJ (1980) Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis. Proc Natl Acad Sci USA 77: 862–865

    Google Scholar 

  • Hirata F, Matsuda K, Notsu Y, Hattori T, del Carmine R (1984) Phosphorylation at a tyrosine residue of lipomodulin in mitogen-stimulated murine thymocytes. Proc Natl Acad Sci USA 81: 4717–4721

    Article  PubMed  CAS  Google Scholar 

  • Hoffman R, Ferguson R, Simmons RL (1977) Effect of cytochalasin B on human lymphocyte responses to mitogens. Time and concentration dependence. J Immunol 118: 1472–1479

    Google Scholar 

  • Hoffman T, Hirata F, Bougnoux P, Fraser BA, Goldfarb RH, Haberman RB, Axelrod J (1981) Phospholipid methylation and phospholipase A2 activation in cytotoxicity by human natural killer cells. Proc Natl Acad Sci USA 78: 3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203: 967–977

    PubMed  CAS  Google Scholar 

  • Homa ST, Conroy DM, Smith AD (1984) Unsaturated fatty acids stimulate the formation of lipoxygenase and cyclooxygenase products in rat spleen lymphocytes. Prostaglandins Leukotrienes Med 14: 417–427

    Article  CAS  Google Scholar 

  • Hovi T, Allison AC, Williams SC (1976 a) Proliferation of human peripheral blood lym-phocytes induced by A23187, a streptomyces antibiotic. Exp Cell Res 97: 92–100

    Google Scholar 

  • Hovi T, Smyth JF, Allison AC, Williams SC (1976 b) Role of adenosine deaminase in lym-phocyte proliferation. Clin Exp Immunol 23: 395–403

    Google Scholar 

  • Howard M, Paul WE (1983) Regulation of B cell growth and differentiation by soluble factors. Annu Rev Immunol 1: 307–333

    Article  PubMed  CAS  Google Scholar 

  • Hui DY, Harmony JAK (1980 a) Inhibition of Ca’ accumulation in mitogen-activated lymphocytes: role of membrane-bound plasma lipoproteins. Proc Natl Acad Sci USA 77: 4764–4768

    Google Scholar 

  • Hui DY, Harmony JAK (1980 b) Inhibition by low density lipoproteins of mitogen-stim-ulated cyclic nucleotide production by lymphocytes. J Biol Chem 255: 1413–1419

    Google Scholar 

  • Hui DY, Harmony JAK (1980 c) Phosphatidylinositol turnover in mitogen-activated lym-phocytes. Biochem J 192: 91–98

    Google Scholar 

  • Hume DA, Weidemann MJ (1980) Intracellular second messengers in mitogenic lymphocyte transformation. Res Monogr Immunol 2: 183–225

    Google Scholar 

  • Hume DA, Hansen K, Weidemann MJ, Ferber E (1978) Cytochalasin B inhibits lympho-cyte transformation through its effects on glucose transport. Nature 272: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Hume DA, Weidemann MJ, Ferber E (1979) Preferential inhibition by quercetin of mi-togen-stimulated thymocyte glucose transport. JNCI 62: 1243–1246

    PubMed  CAS  Google Scholar 

  • Humes JL, Bonney RJ, Pelus L, Dahlgren ME, Sadowski SJ, Kuehl FA Jr, Davies P (1977) Macrophage synthesis and release of prostaglandins in response to inflammatory stimuli. Nature 269: 149–151

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54: 897–930

    Article  PubMed  CAS  Google Scholar 

  • Imboden J, Weiss A, Stobo J (1985) The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium. J Immunol 134: 663–665

    PubMed  CAS  Google Scholar 

  • Inbar M, Shinitzky M (1975) Decrease in microviscosity in lymphocyte surface membrane associated with stimulation induced by concanavalin A. Eur J Immunol 5: 166–170

    Article  PubMed  CAS  Google Scholar 

  • Isakov N, Altman A (1986) Lymphocyte activation and immune regulation. Immunol To-day 7: 155–157

    Article  Google Scholar 

  • Isakov N, Scholz W, Altman A (1986) Signal transduction and intracellular events in T-lymphocyte activation. Immunol Today 7: 271–277

    Article  CAS  Google Scholar 

  • Iyer AP, Pishak SA, Sniezek MJ, Mastro AM (1984) Visualization of protein kinases in lymphocytes stimulated to proliferate with concanavalin A or inhibited with a phorbol ester. Biochem Biophys Res Commun 121: 392–399

    Article  PubMed  CAS  Google Scholar 

  • Johnson EM, Hadden JW (1975) Phosphorylation of lymphocyte nuclear acidic proteins: regulation by cyclic nucleotides. Science 1807: 1198–1200

    Article  Google Scholar 

  • Johnson HM, Archer DL, Torres BA (1982) Cyclic GMP as the second messenger on helper cell requirement for gamma-interferon production. J Immunol 129: 2570–2572

    PubMed  CAS  Google Scholar 

  • Johnson HM, Vassallo T, Torres BA (1985) Interleukin 2-mediated events in y-interferon production are calcium dependent at more than one site. J Immunol 134: 967–970

    PubMed  CAS  Google Scholar 

  • Joseph SK, Thomas AP, Williams RJ, Irvine RF, Williamson JR (1984) Myo-inositol 1,4,5-triphosphate, a second messenger for the hormonal mobilization of intracellular Ca’ in liver. J Biol Chem 259: 3077–3081

    PubMed  CAS  Google Scholar 

  • Josimovitz O, Osawa H, Diamantstein T (1985) The mode of action of the calcium ionophore A23187 on T-cell proliferation. I. The ionophore does not replace lymphokines but acts via induction of IL-2 production on IL-2 responsive cells. Immunobiology 170: 164–174

    Article  Google Scholar 

  • Kaever V, Resch K (1985) Are cyclic nucleotides involved in the initiation of mitogenic activation of human lymphocytes? Biochim Biophys Acta 846: 216–225

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi K, Takai Y, Ogawa Y, Kimura S, Nishizuka Y, Nakamura T, Tonomura A, Ichihara A (1982) Inibitory action of adenosine 3’,5’-monophosphate on phosphatidylinositol turnover. Biochem Biophys Res Commun 104: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi K, Takai Y, Nishizuka Y (1985) Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes. J Biol Chem 260: 1366–1369

    PubMed  CAS  Google Scholar 

  • Kaplan JG, Owens T (1982) The cation pump as a switch mechanism controlling proliferation and differentiation in lymphocytes. Biosci Rep 2: 577–581

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Terao T, Osawa T (1976) Activation of mouse splenic lymphocyte guanylate cyclase by calcium ion. J Biochem 79: 849–852

    PubMed  CAS  Google Scholar 

  • Kato K, Murota S (1985) Lipoxygenase specific inhibitors inhibit murine lymphocyte reactivity to Con A by reducing IL-2 production and its action. Prostaglandins Leukotrienes Med 18: 39–52

    Article  CAS  Google Scholar 

  • Kay JE (1968) Early effects of phytohaemagglutinin on lymphocyte RNA synthesis. Eur J Biochem 4: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Kay JE (1971) Interaction of lymphocytes and phytohaemagglutinin: inhibition by chelating agents. Exp Cell Res 68: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Kay JE (1972) Lymphocyte stimulation by phytohaemagglutinin: role of the early stimulation of potassium uptake. Exp Cell Res 71: 245–247

    Article  PubMed  CAS  Google Scholar 

  • Kay JE, Handmaker SD (1970) Uridine incorporation and RNA in normal and phytohae-magglutinin-stimulated human lymphocytes. Biochim Biophys Acta 186: 62–84

    Google Scholar 

  • Kecskemethy N, Schafer KP (1982) Lectin induced changes among polyadenylated and non-polyadenylated mRNA in lymphocytes. Eur J Biochem 126: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Kelly JP, Parker CW (1979) Effects of arachidonic acid and other unsaturated fatty acids on mitogenesis in human lymphocytes. J Immunol 122: 1556–1562

    PubMed  CAS  Google Scholar 

  • Kelly JP, Johnson MC, Parker CW (1979) Effect of inhibitors of arachidonic acid metabolism on mitogenesis in human lymphocytes: possible role of thromboxanes and products of the lipoxygenase pathway. J Immunol 122: 1563–1571

    PubMed  CAS  Google Scholar 

  • Kiefer M, Blume AJ, Kaback HR (1980) Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc Natl Acad Sci USA 77: 2200–2204

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto T (1984) Signals for B-cell activation and mechanism of transmembrane signal-ing. Prog Immunol 5: 691–698

    Google Scholar 

  • Kiss Z, Steinberg RA (1985) Phorbol ester-mediated protein phosphorylation in S49 mouse lymphoma cells. Cancer Res 45: 2732–2740

    PubMed  CAS  Google Scholar 

  • Klimpel GR, Byers CV, Russell DH, Lucas DO (1979) Cyclic AMP-dependent protein kinase activation and the induction of ornithine decarboxylase during lymphocyte mito-genesis. J Immunol 123: 817–824

    PubMed  CAS  Google Scholar 

  • Kohno H, Kanno T (1985) Properties and activities of aminopeptidases in normal and mitogen-stimulated human lymphocytes. Biochem J 226: 59–66

    PubMed  CAS  Google Scholar 

  • Kostka G, Schweiger A (1985) Biphasic increase in the in vivo phosphorylation of nuclear 110-KDa protein during early lymphocyte transformation. Eur J Biochem 148: 437–440

    Article  PubMed  CAS  Google Scholar 

  • Krishnaraj R, Talwar GP (1973) Role of cyclic AMP in mitogen induced transformation of human peripheral leukocytes. J Immunol 111: 1010–1017

    PubMed  CAS  Google Scholar 

  • Kronenberg M, Siu G, Hood LE, Shastri N (1986) The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Annu Rev Immunol 4: 529–592

    Article  PubMed  CAS  Google Scholar 

  • Kronke M, Leonard WJ, Depper JM, Greene WC (1985) Sequential expression of genesinvolved in human T lymphocyte growth and differentiation. J Exp Med 161: 1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Ku Y, Kishimoto A, Takai Y, Ogawa Y, Kimura S, Nishizuka Y (1981) A new possible regulatory system for protein phosphorylation in human peripheral lymphocytes. II. Possible relation to phosphatidylinositol turnover induced by mitogens J Immunol 127: 1375–1379

    Google Scholar 

  • Lad PM, Olson CV, Smiley RA (1985) Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin. Proc Natl Acad Sci USA 82: 869–873

    Article  PubMed  CAS  Google Scholar 

  • Lands W (1984) Biological consequences of fatty acid oxygenase reaction mechanisms. Prostaglandins Leukotrienes Med 13: 35–46

    Article  CAS  Google Scholar 

  • Largen MT, Votta B (1983) Immunocytochemical evidence for 3’,5’-cGMP and 3’,5’cGMP-dependent protein kinase involvement in lymphocyte proliferation. J Cyclic Nucleotide Protein Phosphor Res 9: 231–244

    PubMed  CAS  Google Scholar 

  • Larrick JW, Creswell P (1979) Modulation of cell surface iron transferrin receptors by cellular density and state of activation. J Supramol Struct 11: 579–586

    Article  PubMed  CAS  Google Scholar 

  • Leonard WJ, Kronke M, Peffer NJ, Depper JM, Greene WC (1985 a) Interleukin 2 receptor gene expression in normal human T lymphocytes. Proc Natl Acad Sci USA 82: 6281–6285

    Google Scholar 

  • Leonard WJ, Depper JM, Kronke M, Robb RJ, Waldmann TA, Greene WC ( 1985 b) The human receptor for T-cell growth factor. Evidence for variable post-translational processing, phosphorylation, sulfation, and the ability of precursor forms of the receptor to bind T-cell growth factor. J Biol Chem 260: 1872–1880

    Google Scholar 

  • Lester EP, Cooper HL (1985) lymphocyte blastogenesis. Post-transcriptional controls of protein synthesis. Biochim Biophys Acta 824: 365–373

    Google Scholar 

  • Lichtman AH, Segel GB, Lichman MA (1979) Total and exchangeable calcium in mitogentreated lymphocytes. In: Kaplan JG (ed) The molecular basis of immune cell function. Elsevier/North-Holland, Amsterdam, pp 417–419

    Google Scholar 

  • Lichtman AH, Segel GB, Lichtman MA (1982) Effects of trifluorperazine and mitogenic lectins on calcium ATPase activity and calcium transport by human lymphocyte plasma membrane vesicles. J Cell Physiol 111: 213–217

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Segel GB, Lichtman MA (1983) The role of calcium in lymphocyte proliferation. Blood 61: 413–422

    PubMed  CAS  Google Scholar 

  • Ling NR, Kay JE (1975) Lymphocyte stimulation. North Holland, Amsterdam

    Google Scholar 

  • Low CE, Pupillo MB, Bryant RW, Bailey JM (1984) Inhibition of phytohemagglutinin-in-duced lymphocyte mitogenesis by lipoxygenase metabolites of arachidonic acid: struc-ture-activity relationships. J Lipid Res 25: 1090–1095

    PubMed  CAS  Google Scholar 

  • Lucas DO, Shohet SB, Merler E (1971) Changes in phospholipid metabolism which occur as a consequence of mitogenic stimulation of lymphocytes. J Immunol 106: 768–772

    PubMed  CAS  Google Scholar 

  • Lucas ZJ (1967) Pyrimidine nucleotide synthesis: regulatory control during transformation of lymphocytes in vitro. Science 156: 1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Luckasen JR, White JG, Kersey JH (1974) Mitogenic properties of a calcium ionophore, A23187. Proc Natl Acad Sci USA 71: 5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Lyle LR, Parker CW (1974) Cyclic adenosine 3’,5’-monophosphate responses to concanavalin A in human lymphocytes. Evidence that the response involves specific carbohydrate receptors on the cell surface. Biochemistry 13: 5416–5420

    Google Scholar 

  • Maino VC, Green NM, Crumpton MJ (1974) The role of calcium ions in initiating transformation of lymphocytes. Nature 251: 324–327

    Article  PubMed  CAS  Google Scholar 

  • Maino VC, Hayman MJ, Crumpton MJ (1975) Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens. Biochem J 146: 247–252

    PubMed  CAS  Google Scholar 

  • Masuzawa Y, Osawa T, Inoue K, Nojima S (1973) Effects of various mitogens on the phospholipid metabolism of human peripheral lymphocytes. Biochim Biophys Acta 326: 339–344

    PubMed  CAS  Google Scholar 

  • May CD, Lyman M, Alberto R (1970) Effects of compounds which inhibit lymphocyte stimulation on the utilization of glucose by leukocytes. J Allergy 46: 21–28

    Article  PubMed  CAS  Google Scholar 

  • May WS, Jacobs S, Cuatrecasas P (1984) Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells. Proc Natl Acad Sci USA 81: 2016–2020

    Article  PubMed  CAS  Google Scholar 

  • May WS, Sahyoun N, Jacobs S, Wolf M, Cuatrecasas P (1985) Mechanism of phorbol diester-induced regulation of surface transferrin receptor involves the action of activated protein kinase C and an intact cytoskeleton. J Biol Chem 260: 9419–9426

    PubMed  CAS  Google Scholar 

  • McClain DA, Edelman GM (1976) Analysis of the stimulation-inhibition paradox exhibited by lymphocytes. J Exp Med 144: 1494–1508

    Article  PubMed  CAS  Google Scholar 

  • McPhail LC, Clayton CC, Snyderman R (1984) A potential second messenger role for unsaturated fatty acids: activation of Ca’ -dependent protein kinase. Science 224: 622–625

    Article  PubMed  CAS  Google Scholar 

  • Mednieks MI, Jungmann RA (1982) Selective expression of type I and type II cyclic AMP-dependent protein kinases in subcellular fractions of concanavalin A-stimulated rat thymocytes. Arch Biochem Biophys 213: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Mellors A, Stalmach ME, Cohen A (1985) Co-mitogenic tumor promoters suppress the phosphatidylinositol response in lymphocytes during early mitogenesis. Biochim Biophys Acta 833: 181–188

    PubMed  CAS  Google Scholar 

  • Mendelsohn J, Skinner A, Kornfeld S (1971) The rapid induction by phytohemagglutinin of increased alpha-aminoisobutyric acid uptake by lymphocytes. J Clin Invest 50:818–826

    Google Scholar 

  • Mendelsohn J, Trowbridge I, Castagnola J (1983) Inhibition of human lymphocyte proliferation by monoclonal antibody to transferrin receptor. Blood 62: 821–826

    PubMed  CAS  Google Scholar 

  • Mexmain S, Cook J, Aldigier J-C, Gualde N, Rigaud M (1985) Thymocyte cyclic AMP and cyclic GMP response to treatment with metabolites issued from the lipoxygenase pathway. J Immunol 135: 1361–1365

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  • Michell RH (1982) Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 3: 429–440

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells. Defined characteristics and unanswered questions. Philos Trans R Soc Lond [Biol] 296: 123–137

    Google Scholar 

  • Miller J (1979) Oncodazole (R 17934) an inhibitor of the turnover of phosphatidyl inositol in concanavalin A induced lymphocytes. Biochem Pharmacol 28: 2967–2968

    Article  PubMed  CAS  Google Scholar 

  • Mills GB, Cheung RK, Grinstein S, Gelfand EW (1985 a) Increase in cytosolic free calcium concentration is an intracellular messenger for the production of interleukin 2 but not for expression of the interleukin 2 receptor. J Immunol 134: 1640–1643

    Google Scholar 

  • Mills GB, Cheung RK, Grinstein S, Gelfand EW (1985 b) Interleukin 2-induced lymphocyte proliferation is independent of increases in cytosolic-free calcium concentrations. J Immunol 134: 2431–2435

    Google Scholar 

  • Mills GB, Cragoe EJ Jr, Gelfand EW, Grinstein S ( 1985 c) Interleukin 2 induces a rapid increase in intracellular pH through activation of a Na+/H+ antiport. Cytoplasmic alkalinization is not required for lymphocyte proliferation. J Biol Chem 260: 12500–12507

    Google Scholar 

  • Mills GB, Stewart DJ, Mellors A, Gelfand EW (1986) Interleukin 2 does not induce phosphatidylinositol hydrolysis in activated T cells. J Immunol 136: 3019–3024

    PubMed  CAS  Google Scholar 

  • Mingari MC, Gerosa F, Carra G, Accola RS, Moretta A, Zubler RH, Waldmann TA, Moretta L (1984) Human interleukin 2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 312: 641–642

    Article  PubMed  CAS  Google Scholar 

  • Mire AR, Wickramasinghe RG, Hoffbrand AV (1986) Phytohemagglutinin treatment of T lymphocytes stimulates rapid increases in activity of both particulate and cytosolic protein kinase C. Biochem Biophys Res Commun 137: 128–134

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi Y, Otani S, Matsui I, Morisawa S (1975) Control of ornithine decarboxylase activity by cyclic nucleotides in the phytohemagglutinin induced lymphocyte transformation. Biochem Biophys Res Commun 66: 328–335

    Article  PubMed  CAS  Google Scholar 

  • Monahan TM, Marchand NW, Fritz RR, Abell CW (1975) Cyclic adenosine 3’:5’-monophosphate levels and activities of related enzymes in normal and leukemic lymphocytes. Cancer Res 35: 2540–2547

    PubMed  CAS  Google Scholar 

  • Monroe JG, Niedel JS, Cambier JC (1984) B cell activation. IV. Induction of cell membrane depolarization and hyper-IA expression by phorbol diesters suggests a role for protein kinase C in murine B lymphocyte activation. J Immunol 132: 1472–1478

    Google Scholar 

  • Mookerjee BK, Jung CY (1982) The effects of cytochalasins on lymphocytes: mechanism of action of cytochalasin A on responses to phytomitogens. J Immunol 128: 2153–2159

    PubMed  CAS  Google Scholar 

  • Moolenaar WH, Tertoolen LGJ, deLaat SW (1984) Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature 312: 371–374

    Article  PubMed  CAS  Google Scholar 

  • Moore JP, Smith GA, Hesketh TR, Metcalfe JC (1982) Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes. J Biol Chem 257: 8183–8189

    PubMed  CAS  Google Scholar 

  • Morgan DA, Ruscetti RW, Gallo RC (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193: 1007–1008

    Article  PubMed  CAS  Google Scholar 

  • Muller W, Kuhn R, Goldmann W, Tesch H, Smith FI, Radbruch A, Rajewsky K (1985) Signal requirements for growth and differentiation of activated murine B lymphocytes. J Immunol 135: 1213–1219

    PubMed  CAS  Google Scholar 

  • Munck A (1971) Glucocorticoid inhibition of glucose uptake by peripheral tissues: old and new evidence, molecular mechanisms, and physiological significance. Perspect Biol Med 14: 265–289

    PubMed  CAS  Google Scholar 

  • Muraguchi A, Miyazaki K, Kehrl JH, Fauci AS (1984) Inhibition of human B cell activation by diterpine forskolin. J Immunol 133: 1283–1287

    PubMed  CAS  Google Scholar 

  • Muraguchi A, Kehrl JH. Longo DL, Volkmann DJ, Smith KA, Fauci AS (1985) Interleukin 2 receptors on human B cells. J Exp Med 161: 181–197

    Article  PubMed  CAS  Google Scholar 

  • Namiuchi S, Kumagai S, Imura H, Suginoshita T, Hattori T, Hirata F (1984) Quinacrine inhibits the primary but not secondary proliferative response of human cytotoxic T cells to allogeneic non-T cell antigens. J Immunol 132: 1456–1461

    PubMed  CAS  Google Scholar 

  • Nathaniel D, Mellors A (1983) Mitogen effects on lipid metabolism during lymphocyte activation. Mol Immunol 20: 1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Naylor PH, Thurman GB, Goldstein AL (1979) Effect of calcium on the cyclic GMP eleva-tion induced by thymosin fraction 5. Biochem Biophys Res Commun 90: 810–818

    Article  PubMed  CAS  Google Scholar 

  • Neckers LM, Cossman J (1983) Transferrin receptor induction in mitogen-stimulated hu-man T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2. Proc Natl Acad Sci USA 80: 3494–3498

    Article  PubMed  CAS  Google Scholar 

  • Neckers LM, Yenokida G, James SP (1984) The role of the transferrin receptor in human B lymphocyte activation. J Immunol 133: 2437–2441

    PubMed  CAS  Google Scholar 

  • Negendank WG, Collier CR (1976) Ion contents of human lymphocytes. Exp Cell Res 101: 31–40

    Article  PubMed  CAS  Google Scholar 

  • Negendank W, Shaller C (1979) Potassium-sodium distribution in human lymphocytes: de- scription by the association-induction hypothesis. J Cell Physiol 98: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Nisbet-Brown E, Cheung RK, Lee JWW, Gelfand EW (1985) Antigen-dependent increase in cytosolic free calcium in specific human T-lymphocyte clones. Nature 316: 545–547

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface transduction and tumor pro-motion. Nature 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y, Takai Y, Kishimoto A, Kikkawa U, Kaibuchi K (1984) Phospholipid turnover in hormone action. Recent Prog Horm Res 40: 301–345

    PubMed  CAS  Google Scholar 

  • Nordenberg J, Stenzel KH, Novogrodsky A (1983)12-O-tetradecanoylphorbol-13-acetate and concanavalin A enhanced glucose uptake in thymocytes by different mechanisms. J Cell Physiol 117: 183–188

    Google Scholar 

  • Northoff H, Dorken B, Resch K (1978) Ligand-dependent modulation of membrane phos-pholipid metabolism in Con A-stimulated lymphocytes. Exp Cell Res 113: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Novogrodsky A (1972) Concanavalin A stimulation of rat lymphocyte ATPase. Biochim Biophys Acta 266: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Novogrodsky A, Katchalski E (1970) Effect of phytohemagglutinin and prostaglandins on cyclic AMP synthesis in rat lymph node lymphocytes. Biochim Biophys Acta 215: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Novogrodsky A, Quittner S, Rubin AL, Stenzel K (1978) Transglutaminase activation in human lymphocytes: early activation by phytomitogens. Proc Natl Acad Sci USA 75: 1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Novogrodsky A, Ravid A, Rubin AL, Stenzel KH (1982) Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Proc Natl Acad Sci 79: 1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20: 462–466

    PubMed  CAS  Google Scholar 

  • O’Brien RL, Parker JW, Dixon JFP (1978) Mechanisms of lymphocyte transformation. Prog Mol Subcell Biol 6: 201–270

    Article  Google Scholar 

  • O’Flynn K, Linch DC, Tatham PER (1984) The effect of mitogenic lectins and monoclonal antibodies on intracellular free calcium concentration in human T-lymphocytes. Biochem J 219: 661–666

    PubMed  Google Scholar 

  • Ohara J, Watanabe T (1982) Microinjection of macromolecules into normal murine lymphocytes by cell fusion technique. I. Quantitative microinjection of antibodies into normal splenic lymphocytes. J Immunol 128: 1090–1096

    Google Scholar 

  • Ohara J, Kishimoto T, Yamomura Y (1978) In vitro immune response of human peripheral lymphocytes. J Immunol 121: 2088–2096

    PubMed  CAS  Google Scholar 

  • Oliver JM, Gelfand EW, Pearson CB, Pfeiffer JR, Dosch H-M (1980) Microtubule assembly and concanavalin A capping in lymphocytes: reappraisal using normal and abnormal human peripheral blood cells. Proc Natl Acad Sci USA 77: 3499–3503

    Article  PubMed  CAS  Google Scholar 

  • Orme M, Shand FL (1981) Inhibitors of prostaglandin synthetase block the generation of suppressor T cells induced by concanavalin A. Int J Immunopharmacol 3: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Otani S, Matsui I, Morisawa S, Masutani M, Mizoguchi Y, Morisawa S (1980) Induction of ornithine decarboxylase in guinea pig lymphocytes by the divalent cation ionophore A23187 and phytohemagglutinin. J Biochem 88: 77–85

    PubMed  CAS  Google Scholar 

  • Otteskog P, Wanger L, Sunquist KG (1983) Cytochalasins distinguish by their action rest- ing human T lymphocytes from activated T cell blast. Eur Cell Res 144: 443–454

    Article  CAS  Google Scholar 

  • Owens T, Kaplan JG (1980) Increased cationic fluxes in stimulated lymphocytes of the mouse: response of enriched B- and T-cell subpopulations to B- and T-cell mitogens. Can J Biochem 58: 831–839

    Article  PubMed  CAS  Google Scholar 

  • Ozato K, Huang L, Ebert JD (1977) Accelerated calcium ion uptake in murine thymocytes induced by concanavalin-A. J Cell Physiol 93: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Palacios R (1985) Mechanisms by which accessory cells contribute in growth of resting T lymphocytes initiated by OKT3 antibody. Eur J Immunol 15: 645–651

    Article  PubMed  CAS  Google Scholar 

  • Parker CW (1974) Correlations between mitogenicity and stimulation of calcium uptake in human lymphocytes. Biochem Biophys Res Commun 61: 1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Parker CW (1982) Pharmacologic modulation of release of arachidonic acid from human mononuclear cells and lymphocytes by mitogenic lectins. J Immunol 128: 393–397

    PubMed  CAS  Google Scholar 

  • Parker CW, Sullivan Ti, Wedner Ell (1974) Cyclic AMP and the immune response. Adv Cyclic Nucleotide Res 4: 1–80

    PubMed  CAS  Google Scholar 

  • Parker CW, Kelly JP, Falkenhein SF, Huber MG (1979 a) Release of arachidonic acid from human lymphocytes in response to mitogenic lectins. J Exp Med 149: 1487–1503

    Google Scholar 

  • Parker CW, Stenson WF, Huber MG, Kelly JP (1979 b) Formation of thromboxane B2 and hydroxy arachidonic acids in purified human lymphocytes in the presence and absence of PHA. J Immunol 122: 1572–1577

    Google Scholar 

  • Patskau GJ, Baxter CS (1985) Specific stimulation by phorbol esters of the phosphoryla- tion of histones H2B and H4 in murine lymphocytes. Cancer Res 45: 667–672

    Google Scholar 

  • Payan DG, Goetzle EJ (1981) The dependence of human T-lymphocyte migration on the 5-lipoxygenation of endogenous arachidonic acid. J Clin Immunol 1: 266–270

    Article  CAS  Google Scholar 

  • Payan DG, Goetzl EJ (1983) Specific suppression of human T lymphocyte function by leu- kotriene B4. J Immunol 131: 551–553

    PubMed  CAS  Google Scholar 

  • Payan DG, Missirian-Bastian A, Goetzl EJ (1984) Human T lymphocyte subset specificity of the regulatory effects of leukotriene B4. Proc Natl Acad Sci USA 81: 3501–3505

    Article  PubMed  CAS  Google Scholar 

  • Peters JH, Hausen P ( 1971 a) Effect of PHA on lymphocyte membrane transport. I. Stim-ulation of uridine uptake. Eur J Biochem 19: 502–508

    Google Scholar 

  • Peters JH, Hausen P (1971 b) Effect of PHA on lymphocyte membrane transport. II. Stim-ulation of “facilitated diffusion” of 3–0-methyl-glucose. Eur J Biochem 19: 509–513

    Google Scholar 

  • Peterson OH, Maruyama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307: 693–696

    Article  Google Scholar 

  • Phillips JL, Azair P (1974) Zinc transferrin enhancement of nucleic acid synthesis in phytohemagglutinin-stimulated human lymphocytes. Cell Immunol 10: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Piga A, Wickremasinghe MR, Taheri MR, Yaxley JC, Hoffbrand AV (1985) Phytohemagglutinin-induced changes in tyrosine protein kinase and its endogenous substrates in human lymphocytes. Exp Cell Res 159: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Pommier G, Ripert G, Azoulay E, Depieds R (1975) Effects of concanavalin A on membrane-bound enzymes from mouse lymphocytes. Biochim Biophys Acta 389: 483–494

    Article  PubMed  CAS  Google Scholar 

  • Pompidou A, Rousset S, Mace B, Michel P, Esnous D, Renard N (1984) Chromatin structure and nucleic acid synthesis in human lymphocyte activation by phytohemagglutinin. Exp Cell Res 150: 213–225

    Article  PubMed  CAS  Google Scholar 

  • Quastel MR, Kaplan JG (1968) Inhibition by ouabain of human lymphocyte transformation induced by phytohemagglutinin in vitro. Nature 219: 198–200

    Article  PubMed  CAS  Google Scholar 

  • Quastel MR, Kaplan JG (1970) Early stimulation of potassium uptake in lymphocytes treated with PHA. Exp Cell Res 63: 230–233

    Article  PubMed  CAS  Google Scholar 

  • Quastel MR, Kaplan JG (1975) Ouabain binding to intact lymphocytes: enhancement by phytohemagglutinin and leucoagglutinin. Exp Cell Res 94: 351–362

    Article  PubMed  CAS  Google Scholar 

  • Quastel MR, Milthorpe P, Kaplan JG, Vogelfanger IJ (1974) Further studies on M-ATPase in lymphocytes and plaque-forming cells: possible species and functional differences between lymphocyte subclasses. In: Lindahl-Kiessling K, Osoba D (eds) Lymphocyte recognition and effector mechanisms. Academic, New York, pp 493–500

    Google Scholar 

  • Reed JC, Alpers JD, Nowell PC, Hoover RG (1986) Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci USA 83: 3982–3986

    Article  PubMed  CAS  Google Scholar 

  • Reeves JP (1975) Calcium-dependent stimulation of 3-O-methylglucose uptake in rat thymocytes by the divalent cation ionophore A23187. J Biol Chem 250: 9428–9430

    PubMed  CAS  Google Scholar 

  • Resch K, Ferber E (1972) Phospholipid metabolism of stimulated lymphocytes. Effects of phytohemagglutinin, concanavalin A and antiimmunoglobulin serum. Eur J Biochem 27: 153–161

    Google Scholar 

  • Resch K, Ferber E, Odenthal J, Fischer H (1971) Early changes in the phospholipid metabolism of lymphocytes following stimulation with phytohemagglutinin and with lysolecithin. Eur J Immunol 1: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Resch K, Gelfand EW, Hansen K, Ferber E (1972) Lymphocyte activation: rapid changes in the phospholipid metabolism of plasma membranes during stimulation. Eur J Immunol 2: 598–601

    Article  PubMed  CAS  Google Scholar 

  • Resch K, Prester M, Ferber E, Gelfand EW (1976) The inhibition of initial steps of lymphocyte transformation by cytochalasin B. J Immunol 117: 1705–1710

    PubMed  CAS  Google Scholar 

  • Resch K, Bovillon D, Gemsa D, Averdunk R (1977) Drugs which disrupt microtubules do not inhibit the initiation of lymphocyte activation. Nature 265: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Resch K, Bovillon D, Gemsa D (1978) The activation of lymphocytes by the ionophore A23187. J Immunol 120: 1514–1520

    PubMed  CAS  Google Scholar 

  • Resch K, Wood T, Northoff H, Cooper HL (1981) Microtubules: are they involved in the initiation of lymphocyte activation? Eur J Biochem 115: 659–664

    Article  PubMed  CAS  Google Scholar 

  • Resch K, Schneider S, Szamel M (1983) Characterization of functional domains of the lymphocyte plasma membrane. Biochim Biophys Acta 733: 142–153

    Article  PubMed  CAS  Google Scholar 

  • Resch K, Brennecke M, Goppelt M, Kaever V, Szamel M (1984) The role of phospholipids in the signal transmission of activated lymphocytes-T. Prog Immunol 5: 349–360

    Google Scholar 

  • Rink TJ, Deutsch C (1983) Calcium-activated potassium channels in lymphocytes. Cell Calcium 4: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1980) Indomethacin-induced accumulation of diglyceride in activated human platelets. J Biol Chem 255: 2259–2262

    PubMed  CAS  Google Scholar 

  • Robins RK (1982) Purine nucleoside 3’,5’-cyclic monophosphates as hormonal modulators of cellular proliferation, metastases and lymphocyte response. Nucleosides Nucleotides 1: 205–231

    Article  CAS  Google Scholar 

  • Rochette-Egly C, Kempf J (1981) Cyclic nucleotides and calcium in human lymphocytes induced to divide. J Physiol (Paris) 77: 721–725

    CAS  Google Scholar 

  • Rode HN, Szamel M, Schneider S, Resch K (1982) Phospholipid metabolism of stimulated lymphocytes. Preferential incorporation of polyunsaturated fatty acids into plasma membrane phospholipid upon stimulation with concanavalin A. Biochim Biophys Acta 688: 66–74

    Google Scholar 

  • Rogers J, Hesketh TR, Smith GA, Metcalfe JC (1983) Intracellular pH of stimulated thy- mocytes measured with a new fluorescent indicator. J Biol Chem 258: 5994–5997

    PubMed  CAS  Google Scholar 

  • Rola-Pleszczynski M, Gagnon L, Rudzinska M, Borgeat P, Sirois P (1984) Human natural cytotoxic cell activity: enhancement by leukotriene A4, B4, and D4 but not by stereo-isomers of LTB4 or HETEs. Prostaglandins Leukotrienes Med 13: 113–117

    Article  CAS  Google Scholar 

  • Roos D, Loos JA, Bloom AJ, Scholte BM (1970) Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phytohemagglutinin. Biochim Biophys Acta 222: 565–582

    Google Scholar 

  • Ross EM, Gilman AG (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 49: 533–564

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Lindgren JA, Kullman C, Jondal M (1985) Products of the lipoxygenase pathway in human natural killer cell cytotoxicity. Cell Immunol 93: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Rudd CE, Rogers KA, Brown DL, Kaplan JG (1979) Microtubules, colchicine, and lymphocyte blastogenesis. Can J Biochem 57: 673–683

    PubMed  CAS  Google Scholar 

  • Salari H, Braquet P, Borgeat P (1984) Comparative effects of indomethacin, acetylenic acids, 15 HETE, nordihydroguaiaretic acid and BW-755 on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukotrienes Med 13: 53–60

    Article  CAS  Google Scholar 

  • Samelson LE, Harford J, Schwartz RH, Klausner RD (1985) A 20-KDa protein associated with the murine T-cell antigen receptor is phosphorylated in response to activation by antigen or concanavalin A. Proc Natl Acad Sci USA 82: 1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B (1982) The leukotrienes: an introduction. Adv Prostaglandin Thromboxane Leukotriene Res 9: 1–18

    CAS  Google Scholar 

  • Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47: 997–1029

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Hasegawa-Sasaki H (1981) Effects of anchorage-modulating doses of concanavalin A, microtubule-disrupting drugs and microfilament perturbants, cytochalasins, in the phosphatidylinositol response of rat lymphnode cells. Biochim Biophys Acta 649: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Hasegawa-Sasaki H (1985) Breakdown of phosphatidylinositol 4,5-bisphosphate in a T-cell leukemia line stimulated by phytohemagglutinin is not dependent on Ca’ mobilization. Biochem J 227: 971–979

    PubMed  CAS  Google Scholar 

  • Schellenberg RR, Gillespie E (1977) Colchicine inhibits phosphatidylinositol turnover induced in lymphocytes by concanavalin A. Nature 265: 741–742

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg RR, Gillespie E (1980) Effects of colchicine, vinblastine, griseofulvin and deuterium oxide upon phospholipid metabolism in concanavalin A-stimulated lymphocytes. Biochim Biophys Acta 619: 522–532

    PubMed  CAS  Google Scholar 

  • Schreiner GF, Unanue ER (1975) The modulation of spontaneous and anti-Ig-stimulated motility of lymphocytes by cyclic nucleotides and adrenergic and cholinergic agents. J Immunol 114: 802–809

    PubMed  CAS  Google Scholar 

  • Schumm DE, Morris HP, Webb TE (1974) Early biochemical changes in PHA-stimulated peripheral blood lymphocytes from normal and tumor bearing rats. Eur J Cancer 10: 107–113

    PubMed  CAS  Google Scholar 

  • Schwab R, Crow MK, Russo C, Weksler ME (1985) Requirements for T cell activation by OKT3 monoclonal antibody: role of modulation of T3 molecules and interleukin 1. J Immunol 135: 1714–1718

    PubMed  CAS  Google Scholar 

  • Schwartz A, Nagano K, Nakao M, Lindenmayer GE, Allen JC (1971) The sodium-and potassium-activated adenosinetriphosphatase system. Methods Pharmacol 1: 361–388

    CAS  Google Scholar 

  • Segel GB, Lichtman MA (1976) Potassium transport in human blood lymphocytes treated with phytohemagglutinin. J Clin Invest 58: 1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Segel GB, Lichtman MA (1981) Amino acid transport in human lymphocytes: distinctions in the enhanced uptake with PHA treatment or amino acid deprivation. J Cell Physiol 106: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Segel GB, Hollander MM, Gordon BR, Klemperer MR, Lichtman MA (1975) A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability. J Cell Physiol 86: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Segel GB, Lichtman MA, Hollander MM, Gordon BR, Klemperer MR (1976) Human lymphocyte potassium content during the initiation of phytohemagglutinin induced mitogenesis. J Cell Physiol 88: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Segel GB, Kovach G, Lichtman MA (1979) Sodium-potassium adenosine triphosphatase activity of human lymphocyte membrane vesicles: kinetic parameters, substrate specificity, and effects of phytohemagglutinin. J Cell Physiol 100: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Fridovich J, Goetzl EJ, Dunham PB, Weissmann G (1982) Leukotriene B4 and phosphatidic acid are calcium ionophores. J Biol Chem 257: 4746–4752

    PubMed  CAS  Google Scholar 

  • Shackelford DA, Trowbridge IS (1984) Induction of expression and phosphorylation of the human interleukin 2 receptor by a phorbol diester. J Biol Chem 259: 11706–11712

    PubMed  CAS  Google Scholar 

  • Shapiro HM, Natale PJ, Kamentsky LA (1979) Estimation of membrane potentials of in-dividual lymphocytes by flow cytometry. Proc Natl Acad Sci USA 76: 5728–5730

    Article  PubMed  CAS  Google Scholar 

  • Shenker BJ, Gray I (1979) Cyclic nucleotide metabolism during lymphocyte transforma-tion. Cell Immunol 43: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Sherline P, Mundy GR (1977) Role of the tubulin-microtubular system in lymphocyte activation. J Cell Biol 74: 371–376

    Article  PubMed  CAS  Google Scholar 

  • Smit JW, Bloom NR, van Luyn MJA, Halie MR (1983) Lymphocytes with parallel tubular structures: morphologically a distinctive subpopulation. Blut 46: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Smith JW, Steiner AL, Newberry WM, Parker CW (1971) Cyclic adenosine 3’,5’-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J Clin Invest 50: 432–441

    Google Scholar 

  • Smith KA, Favata MF, Oroszlan S (1983) Production and characterization of monoclonal antibodies to human interleukin 2• strategy and tactics. J Immunol 131: 1808–1815

    PubMed  CAS  Google Scholar 

  • Smith RS, Sherman NS, Coffey RG (1974) Effects of pokeweed mitogen, prostaglandin E1, and cholera toxin on human tonsillar immunoglobulin synthesis and cyclic AMP levels. Int Arch Allergy Appl Immunol 47: 586–597

    Article  PubMed  CAS  Google Scholar 

  • Spach C, Aschkenasy A (1979) Effects of a protein-free diet on the changes in cyclic AMP and cyclic GMP levels induced by immunization in splenic T and B lymphocytes in rat. J Nutr 109: 1265–1273

    PubMed  CAS  Google Scholar 

  • Stark R, Liebes LF, Nevrla D, Silber R (1982) The quantitation of actin in human lymphocytes by isoelectric focusing. Biochem Med 27: 200–206

    Article  PubMed  CAS  Google Scholar 

  • Sternholm RL, Falor WH (1970) Early biochemical changes in phytohemagglutinin-stimulated human lymphocytes of blood and lymphocytes. J Reticuloendothel Soc 7: 471–483

    Google Scholar 

  • Stoeck M, Northoff H, Resch K (1983) Inhibition of mitogen-induced lymphocyte proliferation by ouabain. J Immunol 131: 1433–1437

    PubMed  CAS  Google Scholar 

  • Stolc V (1980) Stimulatory effect of ionophores on adenosine 3’,5’-monophosphate content in human mononuclear leukocytes. Biochem Pharmacol 29: 1991–1994

    Article  PubMed  CAS  Google Scholar 

  • Strom TB, Lundin AP, Carpenter CB (1977) The role of cyclic nucleotides in lymphocyte activation and function. Prog Clin Immunol 3: 115–153

    PubMed  CAS  Google Scholar 

  • Sugiura T, Waku K (1984) Enhanced turnover of arachidonic acid-containing species of phosphatidylinositol and phosphatidic acid of concanavalin A-stimulated lymphocytes. Biochim Biophys Acta 796: 190–198

    PubMed  CAS  Google Scholar 

  • Sundquist KG, Otteskog P, Wanger L, Thorstensson R, Utter G (1980) The morphology and microfilament organization in human blood lymphocytes: effects of substratum and mitogen exposure. Exp Cell Res 130: 327–337

    Article  Google Scholar 

  • Sunshine GH, Basch RS, Coffey RG, Cohen KW, Goldstein G, Hadden JW (1978) Thymopoietin enhances the allogeneic response and cyclic GMP levels of mouse peripheral, thymus-derived lymphocytes. J Immunol 120: 1594–1599

    PubMed  CAS  Google Scholar 

  • Suzuki T, Sadasivan R, Saito-Taki T, Stechschulte DJ, Balentine L (1980) Studies of Fc gamma-receptors of human B lymphocytes: phospholipase A2 activation of Fc gamma-receptors. Biochemistry 19: 6037–6043

    Article  PubMed  CAS  Google Scholar 

  • Svenson M, Bendtzen K (1985) Effects of cyclic GMP-agonists on cyclosporin-induced suppression of human lymphokine production. Allergy 40: 529–534

    Article  PubMed  CAS  Google Scholar 

  • Szamel M, Schneider S, Resch K (1981) Functional interrelationship between (Na+ and K)-ATPase and lysolecithin acyltransferase in plasma membranes of mitogen-stimulated rabbit thymocytes. J Biol Chem 256: 9198–9204

    PubMed  CAS  Google Scholar 

  • Takemoto DJ, Kaplan SA, Appleman MM (1979) Cyclic guanosine 3’,5’-monophosphate and phosphodiesterase activity in mitogen-stimulated human lymphocyte. Biochem Biophys Res Commun 90: 491–497

    Article  PubMed  CAS  Google Scholar 

  • Takemoto DJ, Dunford C, Vaughn D, Kramer KJ, Smith A, Powell RG (1982) Guanylate cyclase activity in human leukemic and normal lymphocytes. Enzyme 27: 179–188

    PubMed  CAS  Google Scholar 

  • Takigawa M, Waksman B (1980) Mechanisms of lymphocyte “deletion” by high concentrations of ligand. I. Cyclic AMP levels and cell death in T-lymphocytes exposed to high concentration of concanavalin A. Cell Immunol 58: 29–38

    Google Scholar 

  • Tam CF, Walford RL (1978) Cyclic nucleotide levels in resting and mitogen-stimulated spleen cell suspensions from young and old mice. Mech Ageing Dev 7: 309–320

    Article  PubMed  CAS  Google Scholar 

  • Tandon NN, Davidson LA, Titus EO (1983) Changes in (Na+ and K+) ATPase activity associated with stimulation of thymocytes by concanavalin A. J Biol Chem 258: 9850–9855

    PubMed  CAS  Google Scholar 

  • Tatham PER, O’Flynn KO, Linch DC (1986) The relationship between mitogen-induced membrane potential changes and intracellular free calcium in human T-lymphocytes. Biochim Biophys Acta 856: 202–211

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Metcalfe JC, Hesketh TR, Smith GA, Moore JP (1984) Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312: 462–465

    Article  PubMed  CAS  Google Scholar 

  • Toh BH, Hard GC (1977) Actin co-caps with concanavalin A receptors. Nature 269: 695–697

    Article  PubMed  CAS  Google Scholar 

  • Tomar RH, Darrow TL, John PA (1981) Response to and production of prostaglandine by murine thymus, spleen, bone marrow and lymph node cells. Cell Immunol 60: 335–346

    Article  PubMed  CAS  Google Scholar 

  • Touraine JL, Hadden JW, Touraine F, Hadden EM, Estensen R, Good RA (1977) Phorbol myristate acetate: a mitogen selective for a T-lymphocyte subpopulation. J Exp Med 145: 460–465

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima S, Hirata F, Axelrod J, Beppu M, Osawa T, Waxdal MJ (1982 a) The relationship between phospholipid methylation and calcium influx in murine lymphocytes stimulated with native and modified Con A. Mol Immunol 19: 229–234

    Google Scholar 

  • Toyoshima S, Hirata F, Iwata M, Axelrod J, Osawa T, Waxdal MJ (1982 b) Lectin-induced mitosis and phospholipid methylation. Mol Immunol 19: 467–476

    Google Scholar 

  • Trevillyan MJ, Nordstrom A, Linna TJ (1985) High tyrosine protein kinase activity in normal peripheral blood lymphocytes. Biochim Biophys Acta 845: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Trotter J, Ferber E (1981) CoA-dependent cleavage of arachidonic acid from phosphatidylcholine and transfer to phosphatidylethanolamine in homogenates of murine thymocytes. FEBS Lett 128: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Trotter J, Fleisch I, Schmidt B, Ferber E (1982) Acyltransferase-catalyzed cleavage of arachidonic acid from phospholipids and transfer to lysophosphatides in lymphocytes and macrophages. J Biol Chem 257: 1816–1823

    PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) T-cell mitogens cause early changes in cytoplasmic free Ca’ and membrane potential in lymphocytes. Nature 295: 68–70

    Article  PubMed  CAS  Google Scholar 

  • Tuil D, Vaulont S, Levin MJ, Munnich A, Moguilewsky M, Bouton MM, Brissot P, Dreyfus J-C, Kahn A (1985) Transient transcriptional inhibition of the transferrin gene by cyclic AMP. FEBS Lett 189: 310–314

    Article  PubMed  CAS  Google Scholar 

  • Udey MC, Parker CW (1982) Effects of inhibitors of arachidonic acid metabolism on alpha-aminoisobutyric acid transport in human lymphocytes. Biochem Pharmacol 31: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Udey MC, Chaplin DD, Wedner Hi, Parker CW (1980) Early activation events in lectinstimulated human lymphocytes: evidence that wheat germ agglutinin and mitogenic lectins cause similar early changes in lymphocyte metabolism. J Immunol 125: 1544–1550

    PubMed  CAS  Google Scholar 

  • Ui M (1984) Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 5: 277–279

    Article  CAS  Google Scholar 

  • Valone FH, Payan DG (1985) Potentiation of mitogen-induced human T-lymphocyte activation by retinoic acid. Cancer Res 45: 4128–4131

    PubMed  CAS  Google Scholar 

  • Van den Berg KJ, Betel I (1971) Early increase of amino acid transport in stimulated lymphocytes. Exp Cell Res 66: 257–259

    Article  PubMed  Google Scholar 

  • Van den Berg KJ, Betel I (1973 a) Increased transport of 2-aminoisobutyric acid in rat lymphocytes stimulated with concanavalin A. Exp Cell Res 76: 63–72

    Google Scholar 

  • Van den Berg KJ, Betel I (1973 b) Selective early activation of a sodium dependent amino acid transport system in stimulated rat lymphocyte. FEBS Lett 29: 149–152

    Google Scholar 

  • Van den Berg KJ, Betel I (1974 a) Correlation of early changes in amino acid transport and DNA synthesis in stimulated lymphocytes. Cell Immunol 10: 319–323

    Google Scholar 

  • Van den Berg KJ, Betel I (1974b) Regulation of amino acid uptake in lymphocytes stimulated by mitogens. Exp Cell Res 84: 412–418

    Article  PubMed  Google Scholar 

  • Vanderhoek JY, Bryant RW, Bailey JM (1980) Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid. J Biol Chem 255: 10064–10066

    PubMed  CAS  Google Scholar 

  • Verma AK (1985) Inhibition of phorbol ester-caused synthesis of mouse epidermal orni-thine decarboxylase by retinoic acid. Biochim Biophys Acta 846: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Wagshal A, Jegasothy B, Waksman B (1978) Regulatory substances produced by lymphocytes. VI. Cell cycle specificity of inhibitor of DNA synthesis action in L cells. J Exp Med 147: 171–181

    Google Scholar 

  • Waksman BH, Dessaint J-P, Katz SP (1980) Proteolysis, calcium and cyclic nucleotides in macrophage T-lymphocyte interaction. In: de Weck AL, Kristensen F, Landy M (eds) Biochemical characterization of lymphokines. Academic, New York, pp 435–443

    Google Scholar 

  • Walker C, Kristensen F, Bettens F, de Weck AL (1983) Lymphokine regulation of activated (G1) lymphocytes. J Immunol 130: 1170–1173

    Google Scholar 

  • Wang T, Sheppard JR, Foker JE (1978) Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis. Science 201: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PD, Anderson PL, Brown DL (1983) Increases in microtubule assembly and in tubulin content on mitogenically stimulated mouse splenic T lymphocytes. Exp Cell Res 144: 367–376

    Article  PubMed  CAS  Google Scholar 

  • Watson J (1975) The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis. J Exp Med 141: 97–111

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Nilsen-Hamilton M, Hamilton RT (1976) The subcellular distribution of adenyl- ate and guanylate cyclases in murine lymphoid cells. Biochemistry 15: 1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Webb DR, Nowowiejski I (1981) Control of suppressor cell activation via endogenous prostaglandin synthesis: the role of T cells and macrophages. Cell Immunol 63: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Webb DR, Stites DP, Perlman JD, Luong D, Fudenberg HH (1973) Lymphocyte activa- tion: the dualistic effect of cAMP. Biochem Biophys Res Commun 53: 1002–1008

    Article  PubMed  CAS  Google Scholar 

  • Wedner HJ, Parker CW (1975) Protein phosphorylation in human peripheral lymphocytes-stimulation by phytohemagglutinin and N6-monobutyryl cyclic AMP. Biochem Biophys Res Commun 62: 808–815

    Article  PubMed  CAS  Google Scholar 

  • Wedner HJ, Parker CW (1976) Lymphocyte activation. Prog Allergy 20: 195–300

    Article  PubMed  CAS  Google Scholar 

  • Wedner HJ, Dankner R, Parker CW (1975) Cyclic GMP and lectin-induced lymphocyte activation. J Immunol 115: 1682–1687

    PubMed  CAS  Google Scholar 

  • Wedner HJ, Chan BY, Parker CS, Parker CW (1979) Cyclic nucleotide phosphodiesterase activity in human peripheral blood lymphocytes and monocytes. J Immunol 123: 725–732

    PubMed  CAS  Google Scholar 

  • Weiel JE, Hamilton TA (1984) Quiscent lymphocytes express intracellular transferrin receptors. Biochem Biophys Res Commun 119: 598–602

    Article  PubMed  CAS  Google Scholar 

  • Weinstein Y, Segal S, Melmon KL (1975) Specific mitogenic activity of 8-Br-guanosine 3’,5’-monophosphate ( Br-cyclic GMP) on B lymphocytes. J Immunol 115: 112–117

    Google Scholar 

  • Weiss A, Imboden J, Shoback D, Stobo J (1984) Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc Natl Acad Sci USA 81: 4169–4173

    Google Scholar 

  • Wess JA, Archer DL (1981) Restoration by cyclic guanosine monophosphate and extracellular calcium of butylated hydroxyanisole-suppressed primary murine thymus-dependent antibody response. Immunopharmacology 3: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Whitesell RR, Johnson RA, Tarpley HL, Regen DM (1977) Mitogen-stimulated glucose transport in thymocytes. Possible role of Ca’ and antagonism by adenosine 3’:5’monophosphate. J Cell Biol 72: 456–469

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF, Rixon RH, Perris AD, Youdale T (1969) Stimulation by calcium of the entry of thymic lymphocytes into the deoxyribonucleic acid-synthetic ( S) phase of the cell cycle. Exp Cell Res 57: 8–12

    Google Scholar 

  • Whitfield JF, MacManus JP, Boynton AL, Gillan DJ, Isaacs RJ (1974) Concanavalin A and the initiation of thymic lymphoblast DNA synthesis and proliferation by a calcium-dependent increase in cyclic GMP level. J Cell Physiol 84: 445–458

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF, MacManus JP, Rixon AH, Boynton AL, Youdale T, Swierenga S (1976) The positive control of cell proliferation by the interplay of calcium and cyclic nucleotides: a review. In Vitro 12: 1–18

    Google Scholar 

  • Whitney RB, Sutherland RM (1972 a) Enhanced uptake of calcium by transforming lymphocytes. Cell Immunol 5: 137–147

    Google Scholar 

  • Whitney RB, Sutherland RM (1972 b) Requirement for calcium ions in lymphocyte transformation stimulated by phytohemagglutinin. J Cell Physiol 80: 329–338

    Google Scholar 

  • Whitney RB, Sutherland RM (1973) Characteristics of calcium accumulation by lymphocytes and alteration in the process induced by phytohemagglutinin. J Cell Physiol 82: 920

    Article  Google Scholar 

  • Williams RO, Loeb LA (1973) Zinc requirement for DNA replication in stimulated human lymphocytes. J Cell Biol 58: 594–601

    Article  PubMed  CAS  Google Scholar 

  • Wolff CHJ, Akerman KEO, Andersson LC (1985) Kinetics of long term (72 hr) calcium content during mitogen activation of cultured human T lymphocytes. J Cell Physiol 123: 46–50

    Article  PubMed  CAS  Google Scholar 

  • Wright P, Quastel MR, Kaplan JG (1973) Differential sensitivity of antigen-and mitogenstimulated human leukocytes to prolonged inhibition of potassium transport. Exp Cell Res 79: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I, Webb DR (1975) Antigen-stimulated changes in cyclic nucleotide levels in the mouse. Proc Natl Acad Sci USA 72: 2320–2324

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Fujimoto K, Ohmura T, Maeda S, Shimada K, Onoue K (1985) Interleukin 3 mRNA induction in human lymphocytes: analysis of the synergistic effect of a phorbol ester and phytohemagglutinin. J Biochem 98: 49–56

    PubMed  CAS  Google Scholar 

  • Yasmeen D, Laird AJ, Hume DA, Weidemann MJ (1977) Activation of 3–0-methyl-glucose transport in rat thymus lymphocytes by concanavalin A. Biochim Biophys Acta 500: 89–102

    Article  PubMed  CAS  Google Scholar 

  • Yunis AA, Arimura GK, Kipnis DM (1963) Amino acid transport in blood cells. I. Effect of cations and amino acid transport in human leukocytes. J Lab Clin Med 62: 465–476

    PubMed  CAS  Google Scholar 

  • Zimmerman TP, Schmitges CJ, Wolberg G, Deeprose RD, Duncan GS, Cuatrecasas P, Elion GB (1980) Modulation of cyclic AMP metabolism by S-adenosylhomocysteine and S-3-deazadenosylhomocysteine in mouse lymphocytes. Proc Natl Acad Sci USA 77: 5639–5643

    Article  PubMed  CAS  Google Scholar 

  • Zwiller J, Revel M-O, Malviya AN (1985) Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 260: 1350–1353

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coffey, R.G. (1988). Intracellular Events During Lymphocyte Activation. In: Bray, M.A., Morley, J. (eds) The Pharmacology of Lymphocytes. Handbook of Experimental Pharmacology, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73217-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73217-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73219-5

  • Online ISBN: 978-3-642-73217-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics