Skip to main content

Generation, Biology, and Assay of Efferent Lymphokines

  • Chapter
  • 119 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 85))

Abstract

To the novice, the immune system presents itself as an extremely complex network of cellular and humoral interactions. This inherent complexity is a reflection of the external world that, by a large variety of attack systems, constantly threatens the integrity of the body. In order to cope with a diverse group of invaders and nonself agents, the immune system had to adapt accordingly and was forced to develop efficient recognition and defense systems (Chap. 1). Among these immunologically specific and nonspecific reactions in both the cellular and humoral compartments, there is a considerable degree of cooperation that requires precise regulation. Beside the well-studied generation of help and suppression in the T and B lymphocyte compartments, it has only recently been fully recognized that non-antibody products of lymphocytes (lymphokines) and macrophages (monokines) may play a prominent role during the induction, maintenance, and effector phases of an immune response. Although lymphokines were first detected in lymphocyte culture supernatants only 20 years ago, this field of immunology has suffered until recently from the lack of a clear biochemical definition of the materials that were generated and employed in a variety of test systems. Usually, a certain lymphokine was named according to a functional response that it generated in a particular in vitro assay. This resulted in a multitude of different names and postulated factors. With the advent of gene technology, it has been possible to improve the characterization of some lymphokines in biochemical terms. This progress has permitted a better study of lymphokine effects in various stages of the immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman NE, Ksiazek J, Yoshida T, Cohen S (1980) Lymphoid sources of murine migration inhibition factor. J Immunol 124: 825 - 830

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Moffat B, Harkins RN (1984) Human lymphotoxin. Production by a lymphoblastoid cell line, purification and initial characterization. J Biol Chem 259: 686-691

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS et al. ( 1985 a) Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 260: 2345-2354

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Eessaln TE, Hass PE (1985 b) Characterization of receptors for human tumour necrosis factor and their regulation by y-interferon. Nature 318: 665 - 667

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB, Kohr WJ, Henzel WJ, Moffat B, Hass PE ( 1985 c) Comparative biochemistry of human lymphotoxin and tumor necrosis factor. In: Sorg C, Schimpl A (eds) Cellular and molecular biology of lymphokines. Academic, New York, pp 665 - 673

    Google Scholar 

  • Altman LC, Snyderman R, Oppenheim JJ, Mergenhagen SE (1973) A human mononuclear leukocyte chemotactic factor: characterization, specificity and kinetics of production by homologous leukocytes. J Immunol 110: 801 - 810

    PubMed  CAS  Google Scholar 

  • Altman LC, Chaccy B, Mackler BF (1975) Physicochemical characterization of chemo- tactic lymphokines produced by human T and B lymphocytes. J Immunol 115: 18 - 21

    PubMed  CAS  Google Scholar 

  • Andrew PW, Rees ADM, Scoging A, Dobson N, Matthews R, Whittall JT, Coates ARM, Lowrie DB (1984) Secretion of a macrophage-activating factor distinct from interferon-y by human T cell clones. Eur J Immunol 14: 962 - 964

    Article  PubMed  CAS  Google Scholar 

  • Aune TM (1984) Modification of cellular protein sulfhydryl groups by activated soluble immune response suppressor. J Immunol 133: 899 - 906

    PubMed  CAS  Google Scholar 

  • Aune TM (1985 a) Inhibition of soluble immune response suppressor activity by growth factors. Proc Natl Acad Sci USA 82:6260-6264

    Google Scholar 

  • Aune TM (1985 b) ELISA for the detection of the lymphokine soluble immune response suppressor. J Immunol Methods 84:33-44

    Article  PubMed  CAS  Google Scholar 

  • Aune TM, Pierce CW (1981 a) Mechanisms of action of macrophage-derived suppressor factor produced by soluble immune response suppressor-treated macrophages. J Immunol 127: 368 - 372

    PubMed  CAS  Google Scholar 

  • Aune TM, Pierce CW (1981 b) Conversion of soluble immune response suppressor to macrophage derived factor by peroxide. Proc Natl Acad Sci USA 78: 5099 - 5103

    Google Scholar 

  • Aune TM, Pierce CW (1982) Preparation of soluble immune response suppressor and macrophage-derived suppressor factor. J Immunol Methods 53: 1 - 14

    Article  PubMed  CAS  Google Scholar 

  • Aune TM, Sorensen CM, Pierce CW (1982) Non-antigen-specific suppressor T cell mediators: structure and action. In: Pick E (ed) Lymphokines, vol 5. Academic, New York, pp 387 - 410

    Google Scholar 

  • Aune TM, Webb DR, Pierce CW (1983) Purification and initial characterization of the lymphokine soluble immune response suppressor. J Immunol 131: 2848 - 2852

    PubMed  CAS  Google Scholar 

  • Berendt MJ, North RJ, Kirstein DP ( 1978 a) The immunological basis of endotoxin-induced tumor regression. Requirement for T-cell-mediated immunity. J Exp Med 148: 1550-1559

    Google Scholar 

  • Berendt MJ, North RI, Kirstein DP (1978 b) The immunological basis of endotoxin-induced tumor regression. J Exp Med 148: 1560 - 1569

    Article  PubMed  CAS  Google Scholar 

  • Berman JS, McFadden RG, Cruikshank WW, Center DM, Beer DJ (1984) Functional characteristics of histamine-bearing mononuclear cells. II. Identification and characterization of two histamine-induced human lymphokines that inhibit lymphocyte migration. J Immunol 133: 1495-1504

    PubMed  CAS  Google Scholar 

  • Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986 a) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factor. Nature 319: 516 - 518

    Article  PubMed  CAS  Google Scholar 

  • Bertolini DR, Nedwin G, Bringman T, Mundy GR (1986 b) Evidence that recombinant human lymphotoxin possesses OAF activity. J Bone Miner Res (in press)

    Google Scholar 

  • Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A (1985 a) Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161: 984 - 995

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Milsark IW, Cerami AC (1985 b) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869 - 871

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Tkacenko V, Milsark I, Krochin N, Cerami A (1986) Effect of y-interferon on cachectin expression by mononuclear phagocytes. Reversal of the 1psd (endotoxin resistance) phenotype. J Exp Med 164: 1791 - 1796

    Article  PubMed  CAS  Google Scholar 

  • Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153: 80 - 82

    Article  PubMed  CAS  Google Scholar 

  • Borish LC, Rocklin RE (1985) Human leukocyte inhibitory factor (LIF)-induced potentiation of antibody-dependent cellular cytotoxicity (ADCC) by human neutrophils. In: Sorg C, Schimpl A (eds) Cellular and molecular biology of lymphokines. Academic, New York, pp 561 - 565

    Google Scholar 

  • Bruns P (1888) Die Heilwirkung des Erysipels auf Geschwülste. Beitr Klin Chir 3: 443 - 446

    Google Scholar 

  • Burmeister G, Zwadlo G, Michels E, Bröcker EB, Malorny U, Sorg C, Flad HD (1985) Use of a monoclonal antibody for the detection of human migration inhibitory factor (MIF) in isolated cells and tissues. In: Sorg C, Schimpl A (eds) Cellular and molecular biology of lymphokines. Academic, New York, pp 797 - 802

    Google Scholar 

  • Busch (1866) Verhandlungen ärztlicher Gesellschaften. Berl Klin Wochenschr 3: 245 - 246

    Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666 - 3670

    Article  PubMed  CAS  Google Scholar 

  • Center DM, Cruikshank W (1982) Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol 128: 2563-2568

    PubMed  CAS  Google Scholar 

  • Cohen S, Ward PA, Yoshida T, Burek CL (1973) Biologic activity of extracts of delayed hypersensitivity skin reaction sites. Cell Immunol 9: 363 - 376

    Article  PubMed  CAS  Google Scholar 

  • Cohn ZA (1978) The activation of mononuclear phagocytes: fact, fancy and future. J Immunol 121: 813 - 816

    PubMed  CAS  Google Scholar 

  • Coley WB (1891) Contribution to the knowledge of sarcoma. Ann Surg 14:199-220

    CAS  Google Scholar 

  • Conta BS, Powell MB, Ruddle NH (1985) Activation of Lyt-1 + and Lyt-2 T cell cloned lines: stimulation of proliferation, lymphokine production, and self-destruction. J Immunol 134: 2185 - 2190

    PubMed  CAS  Google Scholar 

  • Cruikshank W, Center DM (1982) Modulation of lymphocyte migration by human lymphokines. II. Purification of a lymphotactic factor (LCF). J Immunol 128:2569-2574

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Williamson B, Carswell EA, Old LJ (1984) Cell cycle-specific effects of tumor necrosis factor. Cancer Res 44: 83-90

    PubMed  CAS  Google Scholar 

  • David JR (1966) Delayed hypersensitivity in vitro. Its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA 56:72-77

    Article  PubMed  CAS  Google Scholar 

  • David JR (1975) Macrophage activation by lymphocyte mediators. Fed Proc 34: 1730 - 1736

    PubMed  CAS  Google Scholar 

  • Dayer JM, Beutler B, Cerami A (1986) Cachectin/tumor necrosis factor stimulates collage-nase and prostaglandin EZ production by human synovial cells and dermal fibroblasts. J Exp Med 162: 2163 - 2168

    Article  Google Scholar 

  • Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163: 1433 - 1450

    Article  PubMed  CAS  Google Scholar 

  • Eardley DD, Shen FW, Gershon RK, Ruddle NH (1980) Lymphotoxin production by subsets of T cells. J Immunol 124: 1199 - 1202

    PubMed  CAS  Google Scholar 

  • Eifel P, Billingsley A, Lucas ZJ (1979) Rapid killing of viral-infected L cells by a-lymphotoxin. Cell Immunol 47: 197 - 203

    Article  PubMed  CAS  Google Scholar 

  • Endo Y, Matsushima K, Oppenheim JJ (1986) Mechanism of in vitro antitumor effects of interleukin 1. Immunobiology 172: 316 - 322

    Article  PubMed  CAS  Google Scholar 

  • Erickson KL, Cicurel L, Gruys E, Fidler IJ (1982) Murine T-cell hybridomas that produce lymphokine with macrophage-activating factor activity as a constitutive product. Cell Immunol 72: 195 - 201

    Article  PubMed  CAS  Google Scholar 

  • Evans CH (1982) Lymphotoxin — an immunologic hormone with anticarcinogenic and antitumor activity. Cancer Immunol Immunother 12: 181 - 190

    Article  Google Scholar 

  • Evans CH, Heinbaugh JA (1981) Lymphotoxin cytotoxicity, a combination of cytolytic and cytostatic responses. Immunopharmacology 3: 347 - 359

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer JP, Evans CH (1983) The anticarcinogenic and tumor growth inhibitory activities of lymphotoxin are associated with altered membrane glycoprotein synthesis. Cancer Lett 19: 283 - 292

    Article  PubMed  CAS  Google Scholar 

  • Gemsa D, Kramer W, Napierski I, Bärlin E, Till G, Resch K (1981) Potentiation of macrophage tumor cytostasis by tumor-induced ascites. J Immunol 126: 2143 - 2150

    PubMed  CAS  Google Scholar 

  • Gemsa D, Debatin KM, Kramer W, Kubelka C, Deimann W, Kees U, Krammer PH (1983) Macrophage-activating factors from different T cell clones induce distinct macrophage functions. J Immunol 131: 833 - 844

    PubMed  CAS  Google Scholar 

  • Gemsa D, Kubelka C, Debatin KM, Krammer PH (1984) Activation of macrophages by lymphokines from T-cell clones: evidence for different macrophage-activating factors. Mol Immunol 21: 1267 - 1276

    Article  PubMed  CAS  Google Scholar 

  • Gemsa D, Kozan B, Kubelka C, Debatin KM, Krammer PH (1985) T cell clones secrete lymphokines that activate different macrophage functions. In: Pick E (ed) Lymphokines, vol 11. Academic, New York, pp 119 - 156

    Google Scholar 

  • Gong JH, Sprenger H, Gemsa D (1986) Lymphokine-induced activation of the macrophage cell line PU5-1.8 is associated with reduction of DNA- and RNA-synthesis. Immunobiology 173: 386

    Google Scholar 

  • Gowen M, Wood DD, Ihrie EJ, McGuire MKB, Russel RGG (1983) An interleukin 1 like factor stimulates bone resorption in vitro. Nature 306: 378 - 380

    Article  PubMed  CAS  Google Scholar 

  • Gowen M, Nedwin G, Mundy GR (1986) Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma. J Bone Miner Res 1: 75

    Google Scholar 

  • Grabstein KH, Urdal DL, Tushinski RJ, Mochizuki DY, Price VL, Cantrell MA, Gillis S, Conlon PJ (1986) Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science 232: 506 - 508

    Article  PubMed  CAS  Google Scholar 

  • Granger GA, Kolb WP (1968) Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction. J Immunol 101: 111 - 120

    PubMed  CAS  Google Scholar 

  • Granger GA, Williams TW (1968) Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218: 1253 - 1254

    Article  PubMed  CAS  Google Scholar 

  • Granger GA, Yamamoto RS, Fair DS, Hiserodt JC (1978) The human LT system. I. Physical-chemical heterogeneity of LT molecules released by mitogen-activated human lymphocytes in vitro. Cell Immunol 38: 388-402

    Google Scholar 

  • Granger GA, Johnson DL, Plunkett JM, Masunaka JK, Orr SL, Yamamoto RS (1984) Lymphotoxins, a multicomponent family of effector molecules. In: Goldstein AL (ed) Thymic hormones and lymphokines. Plenum, New York, pp 223 - 233

    Google Scholar 

  • Gray PW, Goeddel DV (1983) Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci USA 80: 5842 - 5846

    Article  PubMed  CAS  Google Scholar 

  • Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL, Levinson AD, Goeddel DV (1982) Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 295: 503 - 508

    Article  PubMed  CAS  Google Scholar 

  • Gray PW, Aggarwal BB, Benton CV, Bringman TS, Henzel WJ, Jarett JA, Leung DW et al. (1984) Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 312: 721 - 724

    Article  PubMed  CAS  Google Scholar 

  • Green S, Dobrjansky A, Carswell EA, Kassel RL, Old LJ, Fiore N, Schwartz MK (1976) Partial purification of a serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 73: 381 - 385

    Article  PubMed  CAS  Google Scholar 

  • Harrington JT, Stastny P (1973) Macrophage migration from an agarose droplet: development of a micromethod for assay of delayed hypersensitivity. J Immunol 110: 752 - 759

    PubMed  CAS  Google Scholar 

  • Holter W, Grunow R, Stockinger H, Knapp W (1986) Recombinant interferon-y induces interleukin 2 receptors on human peripheral blood monocytes. J Immunol 136: 2171 - 2175

    PubMed  CAS  Google Scholar 

  • Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE (1972) Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 177: 793 - 795

    Article  PubMed  CAS  Google Scholar 

  • Horton JE, Koopman WJ, Farrar JJ, Fuller-Bonar J, Mergenhagen SE (1979) Partial purification of a bone-resorbing factor elaborated from human allogeneic cultures. Cell Immunol 43: 1 - 10

    Article  PubMed  CAS  Google Scholar 

  • Irons RD, Pfeifer RW, Aune TM, Pierce CW (1984) Soluble immune response suppressor ( SIRS) inhibits microtubule function in vivo an microtubule activity in vitro. J Immunol 133: 2032-2036

    Google Scholar 

  • Kalden JR, Röllinghoff M (eds) (1986) Clinical application of lymphokines and cytokines. Immunobiology 172: 157 - 460

    Google Scholar 

  • Karnovsky ML, Lazdins JK (1978) Biochemical criteria for activated macrophages. J Immunol 121: 809 - 813

    PubMed  CAS  Google Scholar 

  • Kelso A, Glasebrook AL, Kanagawa O, Brunner KT (1982) Production of macrophage-activating factor by T lymphocyte clones and correlation with other lymphokine activities. J Immunol 129: 550 - 556

    PubMed  CAS  Google Scholar 

  • Kleinschmidt WJ, Schultz RM (1982) Similarities of murine gamma interferon and the lymphokine that renders macrophages cytotoxic. J Interferon Res 2: 291 - 299

    Article  PubMed  CAS  Google Scholar 

  • Kniep EM, Lohmann-Matthes ML (1986) Interleukin 2 activates human monocytes to cytotoxicity. Immunobiology 173: 122

    Google Scholar 

  • Kniep EM, Domzig W, Lohmann-Matthes M-L., Kickhöfen B (1981) Partial purification and chemical characterization of macrophage cytotoxicity factor (MCF, MAF) and its separation from migration inhibitory factor ( MIF ). J Immunol 127: 417-422

    Google Scholar 

  • Kolb WP, Granger GA (1968) Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci USA 61: 1250 - 1255

    Article  PubMed  CAS  Google Scholar 

  • Kondo LL, Rosenau W, Wara DW (1981) Role of lymphotoxin in antibody-dependent cell-mediated cytotoxicity ( ADCC ). J Immunol 126: 1131-1133

    Google Scholar 

  • Koopman WJ, Sandberg AL, Wahl SM, Mergenhagen SE (1976) Interaction of soluble C3 fragments with guinea pig lymphocytes. Comparison of effects of C3a, C3b, C3c, and C3d on lymphokine production and lymphocyte proliferation. J Immunol 117: 331

    PubMed  CAS  Google Scholar 

  • Kornfeld H, Berman JS, Beer DJ, Center DM (1985) Interleukin-2 stimulated lymphocyte migration. In: Sorg C, Schimpl A (eds) Cellular and molecular biology of lymphokines. Academic, New York, pp 533 - 537

    Google Scholar 

  • Kownatzki E, Kapp A, Uhrich S (1986) Novel neutrophil chemotactic factor derived from human peripheral blood mononuclear leucocytes. Clin Exp Immunol 64: 214 - 222

    PubMed  CAS  Google Scholar 

  • Krammer PH, Echtenacher B, Gemsa D, Hamann U, Hültner L, Kaltmann B, Kees U, Kubelka C, Marcucci F (1983) Immune-interferon (IFN-y), macrophage activating factors (MAFs), and colony-stimulating factors ( CSFs) secreted by T cell clones in limiting dilution microcultures, long-term cultures, and T cell hybridomas. Immunol Rev 76: 5-28

    Google Scholar 

  • Krammer PH, Echtenacher B, Hamann U, Kaltmann B, Kees U, Kubelka C, Gemsa D (1985) The role of T cell-clone and hybridoma-derived lymphokines in macrophage activation. In: van Furth R (ed) Mononuclear phagocytes. Characteristics, physiology and function. Nijhoff, Amsterdam, pp 533 - 540

    Google Scholar 

  • Kull FC, Cuatrecasas P (1981) Preliminary characterization of the tumor cell cytotoxin in tumor necrosis serum. J Immunol 126: 1279 - 1283

    PubMed  CAS  Google Scholar 

  • Lee SL, Aggarwal BB, Rinderknecht E, Assisi F, Chiu H (1984) The synergistic anti-proliferative effect of y-interferon and human lymphotoxin. J Immunol 133:1083-1086

    PubMed  CAS  Google Scholar 

  • Leopardi E, Rosenau W (1984) Production of a-lymphotoxin by human T-cell subsets. Cell Immunol 83: 73 - 82

    Article  PubMed  CAS  Google Scholar 

  • Liu DY, Petschek KD, Remold HG, David JR (1980) Role of sialic acid in the macrophage glycolipid receptor for MIF. J Immunol 124: 2042 - 2047

    PubMed  CAS  Google Scholar 

  • Liu DY, Yu SF, Miller PA, Remold HG, David JR (1984) Glycolipid-dependent interaction between human migration inhibitory factor and mononuclear phagocytes. Cell Immunol 88: 350 - 360

    Article  PubMed  CAS  Google Scholar 

  • Lohmann-Matthes M-L, Kreutzer H-P (1984) Human macrophage activating factor activates macrophages across species barrier. Lymphokine Res 3: 256

    Google Scholar 

  • Lovett D, Kozan B, Hadam M, Resch K, Gemsa D (1986) Macrophage cytotoxicity: interleukin 1 as a mediator of tumor cytostasis. J Immunol 136: 340 - 347

    PubMed  CAS  Google Scholar 

  • Luger TA, Charon JA, Colat M, Micksche M, Oppenheim JJ (1983) Chemotactic properties of partially purified human epidermal cell-derived thymocyte-activation factor ( ETAF) for polymorphonuclear and mononuclear cells. J Immunol 131: 816-820

    Google Scholar 

  • Mackaness GB (1969) The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med 129: 973 - 992

    Article  PubMed  CAS  Google Scholar 

  • Malkovsky M, North ME, Loveland B, Asherson GL, Fiers W (1986) Augmentation of monocyte cytotoxicity by recombinant interleukin-2. 6th international congress of immunology, Toronto, Canada, p 164

    Google Scholar 

  • Männel D, Falk W (1983) Interferon-y is required in activation of macrophages for tumor cytotoxicity. Cell Immunol 79: 396 - 402

    Article  PubMed  Google Scholar 

  • Männel DN, Meltzer MD, Mergenhagen SE (1980 a) Generation and characterization of a lipolysaccharide-induced and serum-derived cytotoxic factor for tumor cells. Infect Immun 28: 204 - 211

    PubMed  Google Scholar 

  • Männel DN, Moore RN, Mergenhagen SE (1980 b) Macrophages as a source of tumoricidal activity (tumor-necrotizing factor). Infect Immun 30: 523 - 530

    PubMed  Google Scholar 

  • Matthews N (1978) Tumour necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties. Br J Cancer 38: 310 - 315

    Article  PubMed  CAS  Google Scholar 

  • Matthews N (1981) Production of an anti-tumour cytotoxin by human monocytes Immunology 44: 135 - 142

    CAS  Google Scholar 

  • McFadden RG, Cruikshank WW, Center DM (1984) Modulation of lymphocyte migration by human lymphokines. III. Characterization of a lymphocyte migration inhibitory factor (LyMIF35K)• Cell Immunol 85: 154 - 167

    Article  PubMed  CAS  Google Scholar 

  • Meltzer MS, Benjamin WR, Farrar JJ (1982) Macrophage activation for tumor cytotoxicity: induction of macrophage tumoricidal activity by lymphokines from EL-4, a continuous T cell line. J Immunol 129: 2802 - 2807

    PubMed  CAS  Google Scholar 

  • Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Möller A, Jacobsen H, Kirchner H (1986) Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323: 816 - 819

    Article  PubMed  CAS  Google Scholar 

  • Miossec P, Yu C-L, Ziff M (1984) Lymphocyte chemotactic activity of human interleukin 1. J Immunol 133: 2007 - 2011

    PubMed  CAS  Google Scholar 

  • Mundy GR (1981) Control of osteoclast function by lymphokines in health and disease. In: Pick E (ed) Lymphokines, vol 4. Academic, New York, pp 395 - 408

    Google Scholar 

  • Mundy GR, Raisz LG (1977) Big and little forms of osteoclast activating factor. J Clin Invest 60: 122 - 128

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR, Luben RA, Raisz LG, Oppenheim JJ, Buell DN (1974 a) Bone-resorbing activity in supernatants from lymphoid cell lines. N Engl J Med 290: 867 - 871

    Google Scholar 

  • Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE (1974 b) Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 291: 1041 1046

    Google Scholar 

  • Mundy GR, Ibbotson KJ, D’Souza SM (1985) Tumor products and the hypercalcemia of malignancy. J Clin Invest 76: 391 - 394

    Article  PubMed  CAS  Google Scholar 

  • Nawroth PP, Bank I, Handley D, Cassimeris J, Chess L, Stern D (1986) Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 163: 1363 - 1375

    Article  PubMed  CAS  Google Scholar 

  • Nedwin GE, Jarett-Nedwin JA, Leung DW, Gray PW (1985) Cloning and expression of the cDNA for human lymphotoxin. In: Sorg C, Schimpl A (eds) Cellular and molecular biology of lymphokines. Academic, New York, pp 675 - 684

    Google Scholar 

  • Neta R, Salvin SB (1982) Lymphokines and interferon: similarities and differences. In: Pick E (ed) Lymphokines, vol 7. Academic, New York, pp 137 - 163

    Google Scholar 

  • North RJ (1978) The concept of the activated macrophage. J Immunol 121:806-809

    PubMed  CAS  Google Scholar 

  • Nowowiejski-Wieder I, Aune TM, Pierce CW, Webb DR (1984) Cell free translation of the lymphokine soluble immune response suppressor (SIRS) and characterization of its mRNA. J Immunol 132: 556-558

    PubMed  CAS  Google Scholar 

  • Old LJ (1985) Tumor necrosis factor (TNF). Science 230: 630 - 632

    Article  PubMed  CAS  Google Scholar 

  • Ostrove JM, Gifford GE (1979) Stimulation of RNA synthesis in L-929 cells by rabbit tumor necrosis factor. Proc Soc Exp Biol Med 160: 354 - 358

    PubMed  CAS  Google Scholar 

  • Pace JL, Russell SW, Torres BA, Johnson HM, Gray PW (1983) Recombinant mouse y-interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol 130: 2011 - 2013

    PubMed  CAS  Google Scholar 

  • Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724 - 729

    Article  PubMed  CAS  Google Scholar 

  • Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV (1985) Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci USA 82: 6060 - 6064

    Article  PubMed  CAS  Google Scholar 

  • Pick E (1985) Preface. Lymphokines 11:XII—XVI

    Google Scholar 

  • Potter JW, van Epps DE (1986) Human T-lymphocyte chemotactic activity: nature and production in response to antigen. Cell Immunol 97: 59 - 66

    Article  PubMed  CAS  Google Scholar 

  • Prystowsky MB, Ely JM, Beller DI, Eisenberg L, Goldman J, Goldman M, Goldwasser E et al. (1982) Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by helper and cytolytic cloned T lymphocytes_ J Immunol 129: 2337-2344

    PubMed  CAS  Google Scholar 

  • Raisz LG, Luben RA, Mundy GR, Dietrich HW, Horton JE, Trummel CL (1975) Effect of osteoclast activating factor from human leukocytes on bone metabolism. J Clin Invest 56: 408 - 413

    Article  PubMed  CAS  Google Scholar 

  • Ralph P, Warren MK, Nakoinz I, Lee M-T, Brindley L, Sampson-Johannes A, Kawasaki ED et al. (1986) Biological properties and molecular biology of the human macrophage growth factor, CSF-1 Immunobiology 172: 194 - 204

    Article  CAS  Google Scholar 

  • Ransom HG, Evans CH (1982) Lymphotoxin enhances the susceptibility of neoplastic and preneoplastic cells to natural killer cell mediated destruction. Int J Cancer 29: 451 - 458

    Article  PubMed  CAS  Google Scholar 

  • Ratliff TL, Thomasson DL, McCool RE, Catalona WJ (1982) T-cell hybridoma production of macrophage activating factor (MAF). I. Separation of MAF from interferon gamma. J Reticuloendothel Soc 393: 397

    Google Scholar 

  • Remold HG, Mednis AD (1979) Two migration inhibitory factors differ in density and susceptibility to neuraminidase and proteinase. J Immunol 122: 1920 - 1925

    PubMed  CAS  Google Scholar 

  • Roberts WK, Vasil A (1982) Evidence for the identity of murine gamma interferon and macrophage activating factor. J Interferon Res 2: 519 - 532

    Article  PubMed  CAS  Google Scholar 

  • Rocklin RE, Bendtzen K, Greineder D (1980) Mediators of immunity: lymphokines and monokines. Adv Immunol 29: 56 - 136

    Google Scholar 

  • Rosenau W, Goldberg ML, Burke GC (1973) Early biochemical alterations induced by lymphotoxin in target cells. J Immunol 111: 1128 - 1135

    PubMed  CAS  Google Scholar 

  • Rosenau W, Burke GC Moy J (1979) Lymphotoxin-induced loss of plasma-membrane protein. Am J Patho194: 473 - 482

    Google Scholar 

  • Rubin BY, Anderson SL, Sullivan SA, Williamson BD, Carswell EA, Old U (1985) High affinity binding of 125I-labeled human tumor necrosis factor ( LuKII) to specific cell surface receptors. J Exp Med 162: 1099-1104

    Google Scholar 

  • Ruddle NH (1985) Lymphotoxin redux. Immunol Today 6: 156 - 159

    Article  CAS  Google Scholar 

  • Ruddle NH, Waksman BH (1967) Cytotoxic of lymphocyte-antigen interaction in delayed hypersensitivity. Science 157: 1060 - 1062

    Article  PubMed  CAS  Google Scholar 

  • Ruddle NH, Waksman BH (1968) Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. III. Analysis of mechanisms. J Exp Med 128: 1267-1279

    Google Scholar 

  • Ruff MR, Gifford GE (1980) Purification and physico-chemical characterization of rabbit tumor necrosis factor. J Immunol 25: 1671 - 1677

    Google Scholar 

  • Ruff MR, Gifford GE (1981) Tumor necrosis factor. Lymphokines 2: 235 - 272

    CAS  Google Scholar 

  • Sandberg AL, Wahl SM, Mergenhagen SE (1975) Lymphokine production by C3b-stimulated B cells. J Immunol 115: 139 - 144

    PubMed  CAS  Google Scholar 

  • Schnaper HW, Aune TM (1985) Identification of lymphokine soluble immune response suppressor in urine of nephrotic children. J Clin Invest 76: 341 - 349

    Article  PubMed  CAS  Google Scholar 

  • Schnaper HW, Pierce CW, Aune TM (1984) Identification and initial characterization of concanavalin A- and interferon-induced human suppressor factors: evidence for a human equivalent of murine soluble immune response suppressor ( SIRS ). J Immunol 132: 2429-2435

    Google Scholar 

  • Schreiber RD, Celada A (1985) Molecular characterization of interferon as a macrophage activating factor. In: Pick E (ed) Lymphokines, vol 11. Academic, New York, pp 87 - 118

    Google Scholar 

  • Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkle BS, Palladino MA (1985) Activation of human polymorphonuclear neutrophil functions by interferon-y and tumor necrosis factors. J Immunol 135: 2069 - 2073

    PubMed  CAS  Google Scholar 

  • Sharma JM, Herberman RB, Djeu JY, Nunn ME (1979) Production of migration inhibition factor by spleen cells of normal rats upon culture in vitro with tumor cells and cells expressing endogenous virus. J Immunol 123: 222 - 231

    PubMed  CAS  Google Scholar 

  • Smith KA (1984) Lymphokine regulation of T cell and B cell function. In: Paul WE (ed) Fundamental immunology. Raven, New York, pp 559 - 576

    Google Scholar 

  • Smith ME, Laudico R, Papermaster BW (1977) A rapid quantitative assay for lymphotoxin. J Immunol Methods 14: 243 - 251

    Article  PubMed  CAS  Google Scholar 

  • Sorg C (1980) Characterization of murine macrophage migration inhibitory activities (MIF) released by concanavalin A stimulated thymus or spleen cells. Mol Immunol 17: 565 - 569

    Article  PubMed  CAS  Google Scholar 

  • Sorg C (1982) Modulation of macrophage functions by lymphokines. Immunobiology 161: 352 - 360

    Article  PubMed  CAS  Google Scholar 

  • Sorg C, Michels E, Marlorny U, Neumann C (1984) Migration inhibitory factors and macrophage differentiation. Springer Semin Immunopathol 7: 311 - 320

    Article  PubMed  CAS  Google Scholar 

  • Spitalny GL, Havell EA (1984) Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med 159: 1560 - 1565

    Article  PubMed  CAS  Google Scholar 

  • Stone-Wolff DS, Yip YK, Kelker HC, Le H, Henriksen-Destefano D, Rubin BY, Rinderknecht E, Aggarwal BB, Vilcek J (1984) Interrelationships of human interferon-gamma with lymphotoxin and monocyte cytotoxin. J Exp Med 159: 828 - 843

    Article  PubMed  CAS  Google Scholar 

  • Sugarman BJ, Aggarwal BB, Hass PE, Figari JS, Palladino MA, Shepard HM (1985) Recombinant human tumor necrosis factor-a: effects on proliferation of normal and transformed cells in vitro. Science 230: 943 - 945

    Article  PubMed  CAS  Google Scholar 

  • Tadakuma T, Pierce CW (1978) Mode of action of a soluble immune response suppressor ( SIRS) produced by concanavalin A-activated spleen cells. J Immunol 120: 481-486

    Google Scholar 

  • Thompson BM, Saklatvala J, Chamber TJ (1986) Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J Exp Med 164: 104 - 112

    Article  Google Scholar 

  • Thurman GB, Braude IA, Gray PW, Oldham RK, Stevenson HC (1985) MIF-like activity of natural and recombinant human interferon-y and their neutralization by monoclonal antibody. J Immunol 134: 305 - 309

    PubMed  CAS  Google Scholar 

  • Trinchieri G, Kobayashi M, Rosen M, Loudon R, Murphy M, Perussia B (1986) Tumor necrosis factor and lymphotoxin induce differentiation of human myeloid cell lines in synergy with immune interferon. J Exp Med 164: 1206 - 1225

    Article  PubMed  CAS  Google Scholar 

  • Trummel CL, Mundy GR, Raisz LG (1975) Release of osteoclast activating factor by normal peripheral blood leukocytes. J Lab Clin Med 85: 1001 - 1007

    PubMed  CAS  Google Scholar 

  • Van Epps DE, Potter JW, Durant DA (1983 a) Production of a human T lymphocyte chemotactic factor by T cell subpopulations. J Immunol 130: 2727 - 2731

    Google Scholar 

  • Van Epps DE, Durant DA, Potter JW (1983 b) Migration of human helper/inducer T cells in response to supernatants from Con A-stimulated suppressor/cytotoxic T cells. J Immunol 131: 697 - 700

    Google Scholar 

  • Vilcek J, Gray PW, Rinderknecht E, Sevastopoulos CG (1985) Interferon-y: a lymphokine for all seasons. In: Pick E (ed) Lymphokines, vol 11. Academic, New York, pp 1 - 32

    Google Scholar 

  • Wahl SM, Iverson GM, Oppenheim JJ (1974) Induction of guinea pig B-cell lymphokine synthesis by mitogenic and nonmitogenic signals to Fc, Ig, and C3 receptors. J Exp Med 140: 1631 - 1645

    Article  PubMed  CAS  Google Scholar 

  • Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, van Arsdell JN, Yamamoto R, Mark DF (1985) Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 228: 149 - 154

    Article  PubMed  CAS  Google Scholar 

  • Ward PA, Volkman A (1975) The elaboration of leukotactic mediators during the interac- tion between parental-type lymphocytes and Fl hybrid cells. J Immunol 115: 1394 - 1399

    PubMed  CAS  Google Scholar 

  • Ward PA, Remold HG, David JR (1970) The production by antigen-stimulated lymphocytes of a leukotactic factor distinct from migration inhibitory factor. Cell Immunol 1: 162 - 174

    Article  PubMed  CAS  Google Scholar 

  • Ward PA, Unanue ER, Goralnick SJ, Schreiner GF (1977) Chemotaxis of rat lymphocytes. J Immunol 119: 416 - 421

    PubMed  CAS  Google Scholar 

  • Ware CF, Granger GA (1981) Mechanisms of lymphocyte-mediated cytotoxicity. The effects of anti-human lymphotoxin antisera on the cytolysis of allogenic B cell lines by MLC-sensitized human lymphocytes in vitro. J Immunol 126: 1919-1926

    Google Scholar 

  • Warren MK, Ralph P (1986) Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol 137: 2281 - 2285

    PubMed  CAS  Google Scholar 

  • Weinberg JB, Chapman HA, Hibbs JB (1978) Characterization of the effects of endotoxin on macrophage tumor cell killing. J Immunol 12: 72 - 80

    Google Scholar 

  • Weiser WY, Greineder DK, Remold HG, David JR (1981) Studies on human migration inhibitory factor: characterization of three molecular species. J Immunol 126: 1958 - 1962

    PubMed  CAS  Google Scholar 

  • Williams TW, Bellanti JA (1983) In vitro synergism between interferons and human lymphotoxin: enhancement of lymphotoxin-induced target cell killing. J Immunol 130: 518 - 520

    PubMed  CAS  Google Scholar 

  • Williams TW, Granger GA (1973) Lymphocyte in vitro cytotoxicity: mechanisms of human lymphotoxin-induced target cell destruction. Cell Immunol 6: 171 - 185

    Article  PubMed  CAS  Google Scholar 

  • Williamson BD, Carswell EA, Rubin BY, Prendergast JS, Old LJ (1983) Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferon. Proc Natl Acad Sci USA 80: 5397 - 5401

    Article  PubMed  CAS  Google Scholar 

  • Wong GHW, Goeddel DV (1986) Tumor necrosis factors-a and -ß inhibit virus replication and synergize with interferons. Nature 323: 819 - 822

    Article  PubMed  CAS  Google Scholar 

  • Wright SC, Bonavida B (1981) Selective lysis of NK-sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J Immunol 126: 1516 - 1521

    PubMed  CAS  Google Scholar 

  • Yoneda T, Mundy GR (1979) Prostaglandins are necessary for osteoclast-activating factor production by activated peripheral blood leucocytes. J Exp Med 149: 279 - 283

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ (1987) Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1. J Immunol 139: 788 - 793

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gemsa, D. (1988). Generation, Biology, and Assay of Efferent Lymphokines. In: Bray, M.A., Morley, J. (eds) The Pharmacology of Lymphocytes. Handbook of Experimental Pharmacology, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73217-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73217-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73219-5

  • Online ISBN: 978-3-642-73217-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics