Skip to main content

Molecular Heterogeneity of Pathogenic Herpes Viruses

  • Conference paper
Book cover Molecular Basis of Viral and Microbial Pathogenesis

Abstract

Herpes viruses are a large group of enveloped DNA containing animal viruses. More than 80 members of the group have been identified in various vertebrates. All herpes viruses appear identical in electron microscopy. A nucleocapsid with 162 capsomers is surrounded by an irregularly shaped membrane that is derived from the inner nuclear membrane of infected cells. It is common to all herpes viruses that, subsequent to primary infection, they persist in the host organism for life. Persisting herpes viruses can be reactivated, resulting in secondary disease. Herpes viruses are usually divided into three subgroups, based on biological criteria, such as pathogenic properties, organ tropism, and oncogenicity. Alpha-herpes viruses, including Herpes simplex virus (HSV) type 1 and type 2, and varizella-zoster virus (VZV) naturally persist in neural tissues. Human cytomegalovirus (HCMV) is a prototype of beta-herpes viruses. Gamma-herpes viruses are able to persist in lymphoid tissues, and some members have been shown to induce lymphoproliferative diseases. Epstein-Barr Virus (EBV) is a prototype of the gamma-1 subgroup. Two T-cell-transforming herpes viruses of non-human primates Herpes virus (H.) saimiri and H. ateles, are members of the gamma-2-subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akrigg A, Wilkinson GWG, Oram JD (1985) The structure of the major immediate early gene of human cytomegalovirus strain AD169. Virus Res 2:107–121

    Article  PubMed  CAS  Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Gatful G, Hudson GS, Satchwell C, Tuffnell PS, Barrell BG (1985) DNA-sequence and expression of the B95-8 Epstein-Barr virus genome. Nature (London) 310:207–211

    Article  Google Scholar 

  • Belfort M, Maley G, Pedersen-Lane J, Maley F (1983) Primary structure of the Esehe- vichia coli thy A gene and its thymidylate synthase product. Proc Natl Acad Sci USA 80:4914–4918

    Article  PubMed  CAS  Google Scholar 

  • Bodemer W, Niller HH, Nitsche N, Scholz B, Fleckenstein B (1986) Organization of the thymidylate synthase gene of herpesvirus saimiri. J Virol 60:114–123

    PubMed  CAS  Google Scholar 

  • Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cel1 41:521–530

    Article  CAS  Google Scholar 

  • Cameron K, Stamminger Th, Craxton M, Bodemer W, Fleckenstein B, Honess RW (1987) The 160K virion protein encoded at the “right” end of the Herpesvirus saimiri genome is homologous to the 140K “membrane” antigen encoded at the “left” end of the Epstein-Barr virus genome. J Virol 61:2063–2070

    PubMed  CAS  Google Scholar 

  • Chen ST, Estes JE, Huang E-S, Pagano JS (1978) Epstein-Barr virus-associated thymi- dine kinase. J Virol 26:203–208

    PubMed  CAS  Google Scholar 

  • Cheng YC, Tsou TY, Hackstadt T, Mallavia LP (1979) Induction of thymidine kinase and DNase in varicella-zoster virus-infected cells and kinetic properties of the virus-induced thymidine-kinase. J Virol 31:172–177

    PubMed  CAS  Google Scholar 

  • Chu FK, Maley GF, Maley F, Belfort M (1984) Intervening sequence in the thymidylate synthase gene of bacteriophage T4. Proc Natl Acad Sci USA 81:3049–3053

    Article  PubMed  CAS  Google Scholar 

  • Cranage MP, Kouzarides T, Bankier AT, Satchwell S, Weston K, Tomlinson P, Barrell B, Hart M, Bell SE, Minson AC, Smith GL (1986) Identification of the human cyto- megalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5:3057–3063

    PubMed  CAS  Google Scholar 

  • Dalrymple MA, McGeoch DJ, Davison AJ, Preston CM (1985) DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Res 13:7865–7879

    Article  PubMed  CAS  Google Scholar 

  • Davidson I, Fromental C, Augereau P, Wildeman A, Zenke M, Chambon P (1986) Cell type specific protein binding to the enhancer of simian virus 40 in nuclear extracts. Nature (London) 323:544–548

    Article  CAS  Google Scholar 

  • Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67:1759–1816

    Article  PubMed  CAS  Google Scholar 

  • Deng TL, Li DW, Jenk CH, Johnson LF (1986) Structure of the gene for mouse thymidylate synthase. Locations of introns and multiple transcription sites. J Biol Chem 261:16000–16005

    CAS  Google Scholar 

  • Dorsch-Häsler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82:8325–8329

    Article  PubMed  Google Scholar 

  • Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS (1986) Specific inhibition of herpes virus ribonucleotide reductase by synthetic peptides. Nature (London) 321:439–441

    Article  CAS  Google Scholar 

  • Ebeling A, Keil G, Nowak B, Fleckenstein B, Berthelot N, Sheldrick P (1983) Genome structure and virion polypeptides of the primate herpes viruses herpesvirus aotus types 1 and 3: comparison with human cytomegalovirus. J Virol 45:115–126

    Google Scholar 

  • Ghazal P, Lubon H, Fleckenstein B, Hennighausen L (1987) Binding of transcription factors and the creation of a large nucleoprotein complex on the human cytomegalovirus enhancer. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Gibson T, Stockwell P, Ginsburg M, Barrell B (1984) Homology between two EBV early genes and HSV ribonucleotide reductase and 38 K genes. Nucleic Acids Res 12: 5087–5099

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn R, Jahn G, Bürkle A, Freese U-K, Fleckenstein B, zur Hausen H (1987) Ge- nomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. J Virol 61:119–124

    PubMed  CAS  Google Scholar 

  • Honess RW (1984) Herpes simplex and “the herpex complex”: diverse observations and a unifying hypothesis. J Gen Virol 65:2077–2107

    Article  PubMed  CAS  Google Scholar 

  • Honess RW, O’Hare P, Young D (1982) Comparison of thymidine kinase activities induced in cells productively infected with Hevpesvirus savfrvivi ,and herpes simplex virus. J Gen Virol 58:237–249

    Article  PubMed  CAS  Google Scholar 

  • Honess RW, Bodemer W, Cameron KR, Niller HH, Fleckenstein B, Randall RE (1986) The A+T-rich genome of Herpesvívus savmíví contains a highly conserved gene for thymidylate synthase. Proc Natl Acad Sci USA 83:3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Laigret F, Martin MA, Repaske R (1985) Characterization of a molecularly cloned retroviral sequence associated with Fv-4 resistance. J Virol 55:768–777

    PubMed  CAS  Google Scholar 

  • Jahn G, Knust E, Schmolla H, Sarre Th, Nelson JA, McDougall JK, Fleckenstein B (1984) Predominant immediate-early transcripts of human cytomegalovirus AD169. J Virol 49:363–370

    PubMed  CAS  Google Scholar 

  • Jahn G, Kouzarides T, Mach M, Scholl B-C, Plachter B, Traupe B, Preddie E, Satchwell SC, Fleckenstein B, Barrell BG (1987) Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalovirus. J Virol 61:1358–1367

    PubMed  CAS  Google Scholar 

  • Keller PM, Davison AJ, Lowe R, Bennett C, Ellis R (1986) Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191

    Article  PubMed  CAS  Google Scholar 

  • Kenny E. Atkinson T, Hartley BS (1985) Nucleotide sequence of the thymidylate syn- thase gene (thyP3) from the Bacillus subtilis phage 3T. Gene 34:335–342

    Article  PubMed  CAS  Google Scholar 

  • Khan AS, Repaske R, Garon CF, Chan HW, Rowe WP, Martin MA (1982) Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA. J Virol 41:435–448

    PubMed  CAS  Google Scholar 

  • Kit S, Leung W-C, Jorgensen G, Trkula D, Dubbs DR (1974) Thymidine kinase isozymes of normal and infected cells. Cold Spring Harbor Symp Quant Biol 39:703–715

    Google Scholar 

  • Kit S, Leung W-C, Jorgensen G, Trkula D, Dubbs DR (1975) Viral-induced thymidine kinase. Prog Med Virol 21:13–34

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987) Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J Virol 61:125–133

    PubMed  CAS  Google Scholar 

  • Mach M, Utz U, Fleckenstein B (1986) Mapping of the major glycoprotein gene of human cytomegalovirus. J Gen Virol 67:1461–1467

    Article  PubMed  CAS  Google Scholar 

  • Maley GF, Bellisario RL,. Guarino DU, Maley F (1979) The primary structure of Laoto- baoillus casei thymidylate synthetase. J Biol Chem 254:1301–1304

    PubMed  CAS  Google Scholar 

  • Muller MT, Hudson JB (1977) Thymidine kinase activity in mouse 3T3 cells infected with murine cytomegalovirus (MCV). Virology 80:430–433

    Article  PubMed  CAS  Google Scholar 

  • Pellet PE, Biggin MD, Barrell B, Roizman B (1985) Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. J Virol 56:807–813

    Google Scholar 

  • Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Ra- falski JA, Whitehorn EA, Baumeister K, Ivanoff L, Petteway SR, Pearson ML, Lau- tenberger JA, Papas TS, Ghrayeb J, Chang NT, Gallo RC, Wong-Staal F (1985) Complete nucleotide sequence of the AIDS virus, HTLV III. Nature (London) 313: 277–284

    Article  CAS  Google Scholar 

  • Stenberg RM, Witte PR, Stinski MF (1985) Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J Virol 56:665–675

    PubMed  CAS  Google Scholar 

  • Takeishi K, Kaneda S, Ayusama D, Shimizu K, Gotoh O, Seno T (1985) Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res 13:2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Thomsen DR, Stenberg RM, Goins WF, Stinski MF (1984) Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc Natl Acad Sci USA 81:659–663

    Article  PubMed  CAS  Google Scholar 

  • Tognoni A, Cattaneo R, Serfling E, Schaffner W (1985) A novel expression selection approach allows precise mapping of the hepatitis B virus enhancer. Nucleic Acids Res 13:7457–7472

    Article  PubMed  CAS  Google Scholar 

  • Wagner EK (1985) Individual HSV transcripts: characterization of specific genes. In: Roizman B (ed) The herpesviruses, vol 3. Plenum, New York

    Google Scholar 

  • Weiher H, König M, Gruß P (1983) Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura FK Davison B, Chaffin K (1985) Murine leukemia virus long terminal repeat sequences can enhance gene activity in a cell-type-specific manner. Mol Cell Biol 5:2832–2835

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mach, M., Niller, H.H., Fleckenstein, B. (1987). Molecular Heterogeneity of Pathogenic Herpes Viruses. In: Rott, R., Goebel, W. (eds) Molecular Basis of Viral and Microbial Pathogenesis. Colloquium der Gesellschaft für Biologische Chemie 9.–11. April 1987 in Mosbach/Baden, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73214-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73214-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73216-4

  • Online ISBN: 978-3-642-73214-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics