Skip to main content

Clostridial Neurotoxins — The Search for a Common Mode of Action

  • Conference paper
Molecular Basis of Viral and Microbial Pathogenesis

Abstract

Modern pharmacology is primarily devoted to the mode of action of drugs. Conversely, a detailed knowledge of their chemistry, pharmacokinetics and pharmacodynamics will improve our understanding of many biological events. Once the latter are known, drugs and events can be held together by a central theory. With some bacterial toxins this goal has been achieved. For instance ADP-ribosylating toxins (Foster and Kinney 1985, Wreggett 1986) like diphtheria, cholera, pertussis toxin, pseudomonas exotoxin A, and also the cytolytic botulinum C2 toxin (Aktories et al. 1986) can be defined by their biologically relevant substrates. Cytolytic toxins like staphylococcal α-toxin or the thiol-activated, cholesterol-binding toxins like streptolysin-O are inserted into biomembranes, form ring-like aggregates and surround artificial pores (Bhakdi this vol.). Still others act in a detergentlike manner, like streptolysin S or staphylococcal θ-toxin (for review see Le Vine and Cuatrecasas 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs K, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature (London) 322:390–392

    Article  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109– 113

    Article  PubMed  CAS  Google Scholar 

  • Albus U, Habermann E (1983) Tetanus toxin inhibits the evoked outflow of an inhibitory (GABA) and an excitatory (D-aspartate) amino acid from particulate brain cortex. Toxicon 21:97–110

    Article  PubMed  CAS  Google Scholar 

  • Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmie- deberg’s Arch Pharmacol 303:133–138

    Article  CAS  Google Scholar 

  • Bigalke H, Ahnert-Hilger G, Habermann E (1981a) Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn Schmiedeberg1s Arch Pharmacol 316:143–148

    Article  CAS  Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981b) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn Schmiedeberg’s Arch Pharmacol 316:244–251

    Article  CAS  Google Scholar 

  • Bigalke H, Dreyer F, Bergey GK (1985) Botulinum A neurotoxin inhibits non-choliner- gic synaptic transmission in mouse spinal cord neurons in culture. Brain Res 360:318–324

    Article  PubMed  CAS  Google Scholar 

  • Bigalke H, Müller H, Dreyer F (1986) Botulinum A neurotoxin, unlike tetanus toxin, acts via a neuraminidase-sensitive structure. Toxicon 24:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • DasGupta BR (1981) Structure and structure-function relation of botulinum neuro- toxins. In: Lewis GE (ed) Biomedical aspects of botulism. Academic Press, London New York, pp 1–19

    Google Scholar 

  • Dolly JO, Black J, Williams RS, Mélling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature (London) 307:457–460

    Article  CAS  Google Scholar 

  • Donovan JJ, Middlebrook JL (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25:2872–2876

    Article  PubMed  CAS  Google Scholar 

  • Dreyer F, Schmitt A (1983) Transmitter release in tetanus and botulinum A toxin- poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pfluegers Arch 399:228–234

    Article  CAS  Google Scholar 

  • Eisel U, Jarausch W, Goretzki K, Henschen A, Engels J, Weller U, Hudel M, Habermann E, Niemann H (1986) Tetanus toxin: Primary structure, expression in E. coli ,and homology with botulinum toxins. EMBO J 5:2495–2502

    PubMed  CAS  Google Scholar 

  • Foster JW, Kinney DM (1985) ADP-Ribosylating microbial toxins. CRC Crit Rev Micro- biol 11:273–298

    Article  CAS  Google Scholar 

  • Habermann E (1981) Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch. Naunyn Schmiedeberg’s Arch Pharmacol 318:105–111

    CAS  Google Scholar 

  • Habermann E, Albus U (1986) Interaction between tetanus toxin and rabbit kidney: A comparison with rat brain preparations. J Neurochem 46:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F (1986) Clostridial neurotoxins: Handling and action at the molecular and cellular level. Curr Top Microbiol Immunol 129:93–179

    Article  PubMed  CAS  Google Scholar 

  • Habermann E, Wellhöner HH, Räker KO (1977) Metabolic fate of 125I-tetanus toxin in the spinal cord of rats and cats with early local tetanus. Naunyn Schmiedeberg’s Arch Pharmacol 299:187–196

    Article  CAS  Google Scholar 

  • Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedeberg’s Arch Pharmacol 311:33–40

    Article  CAS  Google Scholar 

  • Habig WH, Bigalke H, Bergey GK, Neale EA, Hardegree MC, Nelson PG (1986)Tetanus toxin in dissociated spinal cord cultures: Long-term characterization of form and action. J Neurochem 47:930–937

    Article  PubMed  CAS  Google Scholar 

  • Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA 82:1692–1696

    Article  PubMed  CAS  Google Scholar 

  • Janicki P, Habermann E (1983) Tetanus and botulinum toxins inhibit, and black widow spider venom stimulates the release of methionine-enkephalin-like material in vitro. J Neurochem 41:395–402

    Article  PubMed  CAS  Google Scholar 

  • Knight DE (1986) Botulinum toxin types A, B and D inhibit catecholamine secretion from bovine adrenal medullary cells. FEBS Lett 207:222–226

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1986) Affinity-purified tetanus neurotoxin. Interaction with synaptic membranes: Properties of a protease-sensitive receptor component. Biochemistry 25:7047–7054

    Article  PubMed  CAS  Google Scholar 

  • Le Vine H, Cuatrecasas P (1986) An overview of toxin-receptor interactions. In: Dorner F, Drews J (eds) Pharmacology of bacterial toxins. Pergamon, Oxford, pp 31–76

    Google Scholar 

  • Mellanby J (1984) Comparative activities of tetanus and botulinum toxins. Neuro- science 11:29–34

    CAS  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317

    Article  CAS  Google Scholar 

  • Ohashi Y, Kamiya T, Fujiwara M, Narumiya S (1987) ADP-Ribosylation by type C1 and D botulinum neurotoxins: Stimulation by guanine nucleotides and inhibition by guanidino-containing compounds. Biochem Biophys Res Commun 142:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Penner R, Neher E, Dreyer F (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature (London) 324:76–78

    Article  CAS  Google Scholar 

  • Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236:845–852

    PubMed  CAS  Google Scholar 

  • Roa M, Boquet. P (1985) Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. J Biol Chem 260:6827– 6835

    PubMed  CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1984) Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A. Biochem Biophys Res Commun 119:900–904

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1985) Partial amino acid sequences of botulinum neurotoxins Types B and E. Arch Biochem 238:544–548

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Dreyer F, John Ch (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn Schmiedeberg’ s Arch Pharmacol 317:326–330

    Article  CAS  Google Scholar 

  • Shone CC, Hambleton P, Melling J. (1985) Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur J Biochem 151:75–82

    Article  PubMed  CAS  Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212:16–21

    PubMed  CAS  Google Scholar 

  • Staub GC, Walton KM, Schnaar RL, Nichols T, Baichwal R, Sandberg K, Rogers TB (1986) Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J Neurosci 6:1443–1451

    PubMed  CAS  Google Scholar 

  • Weller U, Taylor CF, Habermann E (1986) Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon 24:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA (1986) Bacterial toxins and the role of ADP-ribosylation. J Receptor Res 95-126

    Google Scholar 

  • Yavin E, Nathan A (1986) Tetanus toxin receptors on nerve cells contain a trypsin- sensitive component. Eur J Biochem 154:403–407

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habermann, E. (1987). Clostridial Neurotoxins — The Search for a Common Mode of Action. In: Rott, R., Goebel, W. (eds) Molecular Basis of Viral and Microbial Pathogenesis. Colloquium der Gesellschaft für Biologische Chemie 9.–11. April 1987 in Mosbach/Baden, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73214-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73214-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73216-4

  • Online ISBN: 978-3-642-73214-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics