Gravitational Collapse

  • T. Nakamura
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 24)


There are many kinds of structures in the universe. There are, for example, neutron stars, white dwarfs, main sequence stars like the sun, planets, molecular clouds, globular clusters, elliptical galaxies, spiral galaxies, clusters of galaxies, super clusters of galaxies and so on. The size of these structures ranges from 105 cm(neutron stars) to 1026 cm (super clusters) while the density varies from 1015 g/cm 3 to 10−29 g/cm 3. There is a difference of 44 orders of magnitude in density between neutron stars and superclusters of galaxies. Although there are four kinds of fundamental interactions in our universe which are responsible for the formation of these structures, gravity is the most important because the range of the force is long compared with the strong and weak interactions and because there is no shielding distance in contrast to the electromagnetic interaction. These two characteristic of gravity are by far the most important for the formation of the various structures in the universe.


Black Hole Angular Momentum Neutron Star Event Horizon Einstein Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J.R. Oppenheimer and G. Volkoff: Phys. Rev. 55, 374 (1939)CrossRefMATHADSGoogle Scholar
  2. 2).
    J.R. Oppenheimer and H. Snyder: Phys. Rev. 56, 455 (1939)CrossRefMATHADSGoogle Scholar
  3. 3).
    K. Schwarzschild: Sitzber. Deut. Akad. Wiss 189(1916)Google Scholar
  4. 4).
    R.R. Kerr: Phys. Rev. Lett. 11, 237 (1963)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5).
    A. Tomimatsu and H. Sato: Phys. Rev. Lett. 29, 1344 (1972)CrossRefADSGoogle Scholar
  6. 6).
    W. Israel: Phys. Rev. 164, 1776 (1967);CrossRefADSGoogle Scholar
  7. B. Carter: Phys. Rev. Lett. 26, 331(1971);CrossRefADSGoogle Scholar
  8. D.C. Robinson: Phys. Rev. Lett. 34, 905(1975)CrossRefADSGoogle Scholar
  9. 7).
    R. Penrose: I.A.U. Symp. 64, 82 (1373)Google Scholar
  10. 8).
    M.M. May and R.H. White: Phys. Rev. 141, 1232 (1966)CrossRefADSMathSciNetGoogle Scholar
  11. 9).
    T. Matsuda and H. Sato: Prog. Theor. PEys. 41, 1021 (1969)CrossRefADSGoogle Scholar
  12. 10).
    L. Smarr: Ann. N.Y. Acad. Sci. 301, 569 ( 1977 )CrossRefADSGoogle Scholar
  13. 11).
    T. Nakamura and H. Sato: Prog. Theor. Phys. 65, 1876 (1981);CrossRefADSGoogle Scholar
  14. T. Nakamura and H. Sato: Ann. N.Y. Acad. Sci. 422, 56(1984);CrossRefADSGoogle Scholar
  15. T. Nakamura and H. Sato: Phys. Lett. 86A, 318(1981);ADSGoogle Scholar
  16. T. Nakamura and H. Sato: Prog. Theor. Phys. 66, 2038 (1981);Google Scholar
  17. T. Nakamura and H. Sato: Prog. Theor. Phys. 67, 1396(1982);CrossRefADSGoogle Scholar
  18. T. Nakamura and H. Sato: Prog. Theor. Phys. 71, 1144(1983)CrossRefGoogle Scholar
  19. 12).
    R.F. Stark and T. Piran: Phys.Rev. Lett. 55, 891 (1985)CrossRefADSGoogle Scholar
  20. 13).
    T. Nakamura et. al.: Prog. Theor. Phys. Supple. 90(1987)Google Scholar
  21. 14).
    P. Goldreich and D. Lynder-Bell, M.N.R. Ast. Soc.130, 97(1965)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • T. Nakamura
    • 1
  1. 1.Department of PhysicsKyoto UniversityKyoto 606Japan

Personalised recommendations