Advertisement

Superstrings

  • K. Kikkawa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 24)

Abstract

The string model, which appeared as a theory of hadrons in the early 1970s is now being considered as a promising candidate for a unification theory of all fundamental interactions. After surveying difficulties in attempts of unifying theories in local field theory, we describe why the superstring is considered hopeful and what issues remain unsolved.

Keywords

Conformal Invariance Heterotic String Grand Unify Theory World Sheet Fermion Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example, G.G. Ross, Grand Unified Theories, Benjamin-Cummings (1985).Google Scholar
  2. 2.
    Forinstance, T. Kaluza, Sitz. Ber. Preuss. Akad. Wiss. K1 (1921) 966;Google Scholar
  3. O. Klein, Z. Phys. 37 (1926) 895.CrossRefADSGoogle Scholar
  4. 3.
    E. Farhi L. Susskind 74 (1981) 277;Google Scholar
  5. H. Harari, Phys. Lett. C 104 (1984) 159.Google Scholar
  6. 4.
    Dual Theory, ed. M. Jacob, Phys. Reports reprint Vol. I (North-Holland 1974 ).Google Scholar
  7. 5.
    L. Brink and H.B. Nielsen, Phys. Lett. B45 (1973) 332.CrossRefGoogle Scholar
  8. 6.
    K. Kikkawa M. Yamasaki, Prog. Theor. Phys. 76 (1986) 1379.CrossRefADSMathSciNetGoogle Scholar
  9. 7.
    A. Neveu J. Scherk, Nucl. Phys. B36 (1972) 155;CrossRefADSGoogle Scholar
  10. J. Scherk J.H. Schwarz, Nucl. Phys. B81 (1174) 118;CrossRefGoogle Scholar
  11. T. Yoneya, Prog. Theor. Phys. 51 (1974) 1907.CrossRefADSGoogle Scholar
  12. 8.
    A. Neveu J.H. Schwarz, Nucl. Phys. B31 (1971) 86;CrossRefADSGoogle Scholar
  13. P. Ramond, Phys. Rev. D3 (1971) 86.Google Scholar
  14. 9.
    J.H. Schwarz, Phys. Rep. 89 (1982) 233Google Scholar
  15. M.B. Green, Surveys in High Energy Physics 3 (1983) 127.CrossRefADSGoogle Scholar
  16. 10.
    D. Gross, J.A. Harvey, E. Martinec R. Rohm, Nucl. Phys. B256 (1985) 253;CrossRefADSMathSciNetGoogle Scholar
  17. L. Dixon J. Harvey, Nucl. Phys. B274 (1986) 93;CrossRefADSMathSciNetGoogle Scholar
  18. L. Alvarez-Gaunté, P. Ginsparg, G. Moore, and C. Vafa, Phys. Lett. 171B (1986) 155.CrossRefMathSciNetGoogle Scholar
  19. 11.
    K. Fujikawa, Phys. Rev. D21 (1980) 2848.Google Scholar
  20. 12.
    L. Alvarez-Gaumé E. Witten, Nucl. Phys. B243 (1983) 269.Google Scholar
  21. 13.
    M.B. Green J.H. Schwarz, Phys. Lett. 149B (1984) 117.CrossRefMathSciNetGoogle Scholar
  22. 14.
    M.B. Green J.H. Schwarz, Phys. Lett. 151B (1985) 21.CrossRefMathSciNetGoogle Scholar
  23. 15.
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46;CrossRefADSMathSciNetGoogle Scholar
  24. D. Nemeshansky and A. Sen, Phys. Lett. B178 (1986) 365.CrossRefMathSciNetGoogle Scholar
  25. 16.
    K.S. Narain, Phys. Lett. 169B (1986) 41;CrossRefMathSciNetGoogle Scholar
  26. 17.
    M. Kaku K. Kikkawa, Phys. Rev. D10 (1974) 1823;ADSGoogle Scholar
  27. E. Creamer J.L. Gervais, Nucl. Phys. B76 (1974) 209.CrossRefADSGoogle Scholar
  28. 18.
    E. Witten, Nucl. Phys. B268 (1986) 253.CrossRefADSMathSciNetGoogle Scholar
  29. 19.
    K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Phys. Lett. 72B (1986) 186 & 195.Google Scholar
  30. 20.
    C. Callan, E. Martinec, M. Perry D. Friedan, Nucl. Phys. B262 (1986) 593;ADSMathSciNetGoogle Scholar
  31. E. Fradkin A. Tseytlin, Phys. Lett. 158B (1985) 316;ADSMathSciNetGoogle Scholar
  32. E. Fradkin A. Tseytlin, Phys. Lett. 160B (1985) 64;ADSGoogle Scholar
  33. K. Kikkawa M. Yamasaki, Prog. Theor. Phys. Suppl. No. 85 (1985) 228.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Kikkawa
    • 1
  1. 1.Department of PhysicsOsaka UniversityJapan

Personalised recommendations