Advertisement

Solitons pp 145-161 | Cite as

Painlevé Analysis and Integrability Aspects of Nonlinear Evolution Equations

  • M. Lakshmanan
  • K. M. Tamizhmani
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)

Abstract

A brief review of the singularity structure aspects of the solutions of nonlinear ordinary differential equations and their generalization to partial differential equations leading to the Painlevé (P) property is given. It is pointed out that the Painlevé analysis leads naturally to Lax pairs, Bäcklund transformations, linearizations and Hirota’s bilinearization of nonlinear evolution equations. Specifically we treat the Burgers’, Liouville, Korteweg-de Vries, coupled nonlinear Schrödinger and Kadomtsev -Petviashvili equations as examples.

Keywords

Nonlinear Evolution Equation Nonlinear Schrodinger Equation Backlund Transformation Integrable Dynamical System Painleve Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).MATHCrossRefGoogle Scholar
  2. [2]
    P. J. Olvej., Applications ot Lie Groups to Differential Equations (Springer, New York, 1986).Google Scholar
  3. [3]
    M. J. Ablowitz, A. Ramani and H. Segur, Lett. Nuovo Cim. 23, (1978) 333;MathSciNetCrossRefGoogle Scholar
  4. [3]a
    M. J. Ablowitz, A. Ramani and H. Segur, J. Math. Phys. 21 (1980) 715.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [4]
    E. Hille, Ordinary Differential Equations in the Complex Domain (Wiley, New York, 1976).MATHGoogle Scholar
  6. [5]
    E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956).Google Scholar
  7. [6]
    S. Kovalevskaya, Acta Math. 12 (1889) 177MathSciNetCrossRefGoogle Scholar
  8. [6]a
    R. Cooke, The Mathematics of Sonya Kovalevskaya (Springer, New York, 1984).CrossRefGoogle Scholar
  9. [7]
    M. Lakshmanan and P. Kaliappan, J. Math. Phys. 24 (1983) 795.MathSciNetADSMATHCrossRefGoogle Scholar
  10. [8]
    J. Weiss, M. Tabor and G. Carnevale, J. Math. Phys. 24 (1983) 522.MathSciNetADSMATHCrossRefGoogle Scholar
  11. [9]
    J. Weiss, J. Math. Phys. 26 (1985) 2174.MathSciNetADSMATHCrossRefGoogle Scholar
  12. [10]
    W. Oevel and W-H. Steeb, Phys. Lett. 103A (1984) 239.MathSciNetADSGoogle Scholar
  13. [11]
    K. M. Tamizhmani and M. Lakshmanan, J. Math. Phys. 27 (1986) 2257.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [12]
    R. Sahadevan, K. M. Tamizhmani and M. Lakshmanan, J. Phys. A19 (1986) 1783.MathSciNetADSGoogle Scholar
  15. [13]
    K. M. Tamizhmani, “Geometrical, Group Theoretical and Singularity Structure Analysis Aspects of Certain Nonlinear Partial Differential Equations,” Ph.D. Thesis, University of Madras (1986).Google Scholar
  16. [14]
    J. D. Gibbon, P. Radmore, M. Tabor and D. Wood, Stud. In Appl. Math. 72 (1985) 39.MathSciNetMATHGoogle Scholar
  17. [15]
    M. Tabor and J. D. Gibbon, Physica 18D (1986) 180.MathSciNetADSGoogle Scholar
  18. [16]
    V. E. Zakharov and E. I. Schulman, Physica 4D (1982) 270.MathSciNetADSGoogle Scholar
  19. [17]
    H. Yoshida, Celest. Mech. 31 (1983) 363, 381.ADSMATHCrossRefGoogle Scholar
  20. [18]
    A. Ramani, B. Dorizzi and B. Grammaticos, Phys. Rev. Lett. 49 (1982) 1539;MathSciNetADSCrossRefGoogle Scholar
  21. [18]
    A. Ramani, B. Dorizzi and B. Grammaticos, J. Math. Phys. 24 (1983) 2252.Google Scholar
  22. [19]
    M. Lakshmanan and R. Sahadevan, Phys. Rev. A31 (1984) 861;MathSciNetADSGoogle Scholar
  23. [19]a
    R. Sahadevan and M. Lakshmanan, Phys. Rev. A33 (1985) 3563.MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Lakshmanan
    • 1
  • K. M. Tamizhmani
    • 2
  1. 1.Department of PhysicsBharathidasan UniversityTiruchirapalliIndia
  2. 2.Department of MathematicsPondicherry UniversityPondicherryIndia

Personalised recommendations