Solitons pp 250-281 | Cite as

Soliton Statistical Mechanics: Statistical Mechanics of the Quantum and Classical Integrable Models

  • R. K. Bullough
  • D. J. Pilling
  • J. Timonen
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)


It is shown how the Bethe Ansatz (BA) analysis for the quantum statistical mechanics of the Nonlinear Schrodinger Model generalises to the other quantum integrable models and to the classical statistical mechanics of the classical integrable models. The bose-fermi equivalence of these models plays a fundamental role even at classical level. Two methods for calculating the quantum or classical free energies are developed: one generalises the BA method the other uses functional integral methods. The familiar classical action-angle variables of the integrable models developed for the real line R are used throughout, but the crucial importance of periodic boundary conditions is recognized and these are imposed. Connections with the quantum inverse method for quantum integrable systems are established. The R-matrix and the Yang-Baxter relation play a fundamental role in the theory. The lectures draw together the quantum BA method, the quantum inverse method, and the generalised BA and functional integral methods introduced more recently.


Quantum Statistical Mechanic Classical Statistical Mechanic Free Boson Fermion Form Quantum Integrable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. N. Yang, C. P. Yang, J. Math. Phys. 10 (1969) 1115.ADSMATHCrossRefGoogle Scholar
  2. [2]
    H. B. Thacker, Rev. Mod. Phys. 53 (1981) 253.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. K. Bullough, P. J. Caudrey, in Solitons, ed. R. K. Bullough and P. J. Caudrey (Springer, Heidelberg, 1980) and the other chapters there.Google Scholar
  4. [4]
    E. K. Sklyanin, LOMI preprint E-3–1979 (1979).Google Scholar
  5. [5]
    R. K. Bullough, in Nonlinear Phenomena in Physics, ed. F. Claro (Springer, Heidelberg, 1985), pp. 70–102; R. K. Bullough, D. J. Pilling, J. Timonen, in Nonlinear Phenomena in Physics, pp. 103–128.Google Scholar
  6. [6]
    M. Lakshmanan, Phys. Lett. 61A (1977) 53.ADSGoogle Scholar
  7. [7]
    L. A. Takhtadzhyan, Phys. Lett. 64A (1977) 235.ADSGoogle Scholar
  8. [8]
    S. Coleman, Phys. Rev. D11 (1975) 2088.ADSGoogle Scholar
  9. [9]
    M. Takahashi, M. Suzuki, Prog. Theor. Phys. 48 (1972) 2187.ADSCrossRefGoogle Scholar
  10. [10]
    H. Bergnoff, H. B. Thacker, Phys. Rev. D19 (1979) 3666.ADSGoogle Scholar
  11. [11]
    Korepin [12,13] in effect uses the different relation between μ and g0 that \( \mu = \frac{1}{2}\left( {\pi + {g_o}} \right) \). In [12] he treats the attractive MTM with 0 < g0 < π (π/2<μ<π or, since \( \pi - \mu = \frac{1}{8}\;{\gamma_o} \) (see below), 4π > γ0 > 0) and in [13] he treats a repulsive MTM with -π < g0 < 0 (0 < μ < π/2 or 8π > γ0 > 4π).Google Scholar
  12. [12]
    V. E. Korepin, TMP (USSR) 41 (1979) 169.MathSciNetGoogle Scholar
  13. [13]
    V. E. Korepin, Comm. Math. Phys. 76 (1980) 165.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Luther, Chap. 12 in Solitons Ref. [3], pp. 355–372.Google Scholar
  15. [15]
    M. Jimbo, T. Miwa, Y. Mori, M. Sato, Physica 1D (1980) 80 and references.MathSciNetADSGoogle Scholar
  16. [16]
    E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, Theor. Mat. 40 (1979) 194.MathSciNetGoogle Scholar
  17. [17]
    R. F. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D11 (1975) 3424.Google Scholar
  18. [18]
    R. K. Bullough, D. J. Pilling, J. Timonen, J. Phys. A: Math. Gen. 19 (1986) L955.ADSCrossRefGoogle Scholar
  19. [19]
    R. K. Bullough, D. J. Pilling, J. Timonen, in Physics of Many-Particle Systems, ed. A. S. Davydov (Ukrainian Academy of Sciences of the USSR, Kiev, 1986).Google Scholar
  20. [20]
    P. Goddard, D. Olive, Int. J. Mod. Phys. A1, No. 2 (1986) 303.MathSciNetADSGoogle Scholar
  21. [21]
    M. Jimbo, T. Miwa, in Vertex Operators in Mathematical Physics, ed. J. Lepowsky, S. Mandelstam and I. M. Singer (Springer, Heidelberg, 1984), pp. 275–290 and other papers there.Google Scholar
  22. [22]
    V. Kac, Infinite Dimensional Lie Algebras—An Introduction, 2d ed (Cambridge University Press, Cambridge, 1985).Google Scholar
  23. [23]
    For example S. Olafsson, R. K. Bullough, to be published.Google Scholar
  24. [24]
    P. P. Kulish, E. K. Sklyanin, “Quantum Spectral Transform Method: Recent Developments”, in Proc. of the Tvärminne Symposium, Finland, 1981, ed. J. Hietarinta and C. Montonen (Springer, Heidelberg, 1982).Google Scholar
  25. [25]
    L. D. Faddeev, in Proc. Ecole d’Eté de Physique Theorique, Les Houches 1982, ed. R. Stora and J. B. Zuber (North-Holland, Amsterdam, 1983).Google Scholar
  26. [26]
    M. Wadati and Y. Akutsu, Exactly Solvable Models in Statistical Mechanics, in this volume.Google Scholar
  27. [27]
    H. J. de Vega, in Proc. Symp. on Topological and Geometrical Methods in Field Theory (World Scientific, Singapore, 1986), in press.Google Scholar
  28. [28]
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Heidelberg, 1978).MATHGoogle Scholar
  29. [29]
    R. K. Dodd, R. K. Bullough, Physica Scr. 20 (1979) 514.MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    L. D. Faddeev, Chap. 11 in Solitons Ref. [3], pp. 339–354.Google Scholar
  31. [31]
    D. J. Scalapino, M. Sears and R. S. Ferrell, Phys. Rev. B6 (1972) 3409.ADSGoogle Scholar
  32. [32]
    E. H. Lieb and W. Liniger, Phys. Rev. 130 (1963) 1605.MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    A. G. Izergin and V. E. Korepin, Lett. Math. Phys. 5 (1981) 199.MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. G. Izergin and V. E. Korepin, in Problems in Quantum Field Theory and Statistical Physics 3, ed. P. P. Kulish and V. N. Popov, LOMI Vol. 120 “Nauka” Leningrad.Google Scholar
  35. [35]
    Yi Cheng, DUNG Ph.D. Thesis, University of Manchester (1987).Google Scholar
  36. [36]
    J. Timonen, M. Stirland, D. J. Pilling, Yi Cheng and R. K. Bullough, Phys. Rev. Lett. 56 (1986) 2233.MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J. T. Timonen, R. K. Bullough and D. J. Pilling, Phys. Rev. B34 (1986) 6525.MathSciNetADSGoogle Scholar
  38. [38]
    J. T. Timonen, R. K. Bullough and D. J. Pilling, Classical Limit of Bethe Ansatz Statistical Mechanics for the Massive Thirring Model, to be published.Google Scholar
  39. [39]
    V. E. Korepin, in Completely Solvable Systems in Field Theory, Lecture Notes at SERC-LMS Symposium, University of Durham (1986).Google Scholar
  40. [40]
    D. J. Pilling, R. K. Bullough and J. Timonen, to be published.Google Scholar
  41. [41]
    C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980)Google Scholar
  42. [42]
    J. Timonen, D. J. Pilling and R. K. Bullough, in Coherence, Cooperation and Fluctuations, ed. F. Haake, L. M. Narducci and D. F. Walls (CUP, Cambridge, 1986), pp. 18–34. Unfortunately, in this paper a copying error replacing k = h(k͂) by k͂ = h(k) introduced sign errors in the equivalents of our equations (5.9) and (5.22).Google Scholar
  43. [43]
    M. Wadati, J. Phys. Soc. Japan 54 (1985) 3727.CrossRefGoogle Scholar
  44. [44]
    R. K. Bullough, D. J. Pilling and J. Timonen, in Magnetic Excitations and Fluctuations, ed. S. W. Lovesey, U. Balucani, F. Borsa, V. Tognetti (Springer, Berlin, 1984), pp. 80–85.Google Scholar
  45. [45]
    R. K. Bullough, D. J. Pilling and J. Timonen, in Dynamical Problems in Soliton Systems, ed. S. Takeno (Springer, Heidelberg, 1985), pp. 105–114.Google Scholar
  46. [46]
    S. G. Chung, Y. C. Chang, Phys. Rev. Lett. 50 (1983) 791.MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    N. N. Chen, M. D. Johnson and M. Fowler, Phys. Rev. Lett. 56 (1986) 907;ADSGoogle Scholar
  48. [47]
    N. N. Chen, M. D. Johnson and M. Fowler, Phys. Rev. Lett. 56 (1986) 1427 (Erratum).ADSCrossRefGoogle Scholar
  49. [48]
    Yu- zhong Chen, D. J. Pilling, R. K. Bullough and J. Timonen, to be published.Google Scholar
  50. [49]
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill Book Co., New York, 1965).MATHGoogle Scholar
  51. [50]
    Yu-zhong Chen, D. J. Pilling, R. K. Bullough and J. Timonen, to be published.Google Scholar
  52. [51]
    M. Karowski, H. J. Thun, J. T. Truong and P. H. Weiss, Phys. Lett. 67B (1977) 321.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. K. Bullough
    • 1
  • D. J. Pilling
    • 1
  • J. Timonen
    • 1
    • 2
  1. 1.Department of MathematicsU.M.I.S.T.ManchesterUK
  2. 2.Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations