Components Involved in Protein Translocation Across the Membrane of the Endoplasmic Reticulum

  • Bernhard Dobberstein
Conference paper
Part of the NATO ASI Series book series (volume 16)


Proteins which are synthesized in the cytoplasm of eucaryotic cells can have different destinations. They can remain in the cytoplasm or be transported to a particular organelle such as the endoplasmic reticulum (ER), the mitochondria or the nucleus. The ER is the entry site to the secretory pathway for secretory, lysosomal and for those membrane proteins that become resident of the ER, the Golgi or the plasma membrane. Proteins which enter this pathway have signal sequences that guide them to the ER membrane. A typical signal sequence is about 20 amino acid residues long and its main distinctive feature is a core of hydrophobic amino acid residues. On the luminal side of the membrane the signal sequence of most presecretory proteins is cleaved by signal peptidase.


Protein Translocation Microsomal Membrane Signal Recognition Particle Signal Peptidase Docking Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, D. W., Walter, P. and Ottensmeyer, F.P. (1985) Structure of the signal recognition particle by electron microscopy. Proc. Natl. Acad. Sci. USA, 82: 785–789PubMedCrossRefGoogle Scholar
  2. Blobel, G. and Dobberstein, B. (1975) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67: 852–862PubMedCrossRefGoogle Scholar
  3. Crimaudo, C., Hortsch, M., Gausepohl, H. and Meyer, D. I. (1987) Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins. EMBO J. 6: 75–82PubMedGoogle Scholar
  4. Engelman D. M. and Steitz, T. A. (1981) The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis. Cell, 23: 411–422PubMedCrossRefGoogle Scholar
  5. Evans, E. A., Gilmore, R. and Blobel, G. (1986) Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. USA, 83: 581–585PubMedCrossRefGoogle Scholar
  6. Fujimoto, Y., Watanabe, Y., Uchida, M. and Ozaki, M. (1984) Mammalian signal peptidase: Partial purification and general characterization of the signal peptidase from microsomal membranes of porcine pancreas. J. Biochem. 96, 1125–1131PubMedGoogle Scholar
  7. Gilmore, R., Blobel, G. and Walter, P. (1982a) Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95: 463–469PubMedCrossRefGoogle Scholar
  8. Gilmore, R., Walter, P. and Blobel, G. (1982b) Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95: 470–477PubMedCrossRefGoogle Scholar
  9. Gilmore, R. and Blobel, G. (1985) Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell, 42: 497–505PubMedCrossRefGoogle Scholar
  10. Gundelfinger, E.D., Di Carlo, M., Zopf, D. and Melli, M. (1984) Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J. 3: 2325–2332PubMedGoogle Scholar
  11. Gundelfinger, E.D., Krause, E., Melli, M. and Dobberstein, B. (1983) The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res. 11: 7363–7374PubMedCrossRefGoogle Scholar
  12. Hansen, W., Garcia, P. D. and Walter, P. (1986) In vitro protein translocation across the yeast endoplasmis reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell, 45: 397–406PubMedCrossRefGoogle Scholar
  13. Hikawa, A., Hashimoto, M., Horigome, T., Omata, S. and Sugano, H. (1985) Properties of rat liver signal peptidase reconstituted into liposomes. I. Biochem. 97: 105–112Google Scholar
  14. Hortsch, M. and Meyer, D. I. (1985) Immunochemical analysis of rough and smooth microsomes from rat liver. Segregation of docking protein in rough membranes. Eur. J. Biochem. 150: 559–564PubMedCrossRefGoogle Scholar
  15. Hortsch, M., Griffiths, G. and Meyer, D. I. (1985) Restriction of docking protein to the rough endoplasmic reticulum: immunocytochemical localization in rat liver. Eur. J. Cell Biol. 38: 271–279PubMedGoogle Scholar
  16. Hortsch, M. and Meyer, D.I. (1986) Transfer of secretory proteins through the membrane of the endoplasmic reticulum. Intern. Rev. Cytol. 102: 215–242CrossRefGoogle Scholar
  17. Hortsch, M., Avossa, D. and Meyer, D. I. (1986) Characterization of secretory protein translocation: Ribosome - membrane interaction in endoplasmic reticulum. I. Cell Biol. 103: 241–253CrossRefGoogle Scholar
  18. Ibrahimi, I. and Fuchs, E. (1987) Nascent secretory polypeptides synthesized on Escherichia coli ribosomes are not translocated across mammalian endoplasmic reticulum. I. Bacteriol. 169: 1603–1610Google Scholar
  19. Jackson, R. C. and Blobel, G. (1977) Post-translational cleavage of presecretory proteins with an extract of rough microsomes from dog pancreas containing signal peptidase activity. Proc. Natl. Acad. Sci. USA 74: 5598–5602PubMedCrossRefGoogle Scholar
  20. Jackson, R.C., Walter, P. and Blobel, G. (1980) Secretion requires a cytoplasmically disposed sulphydryl of the RER membrane. Nature, 286: 174–176.PubMedCrossRefGoogle Scholar
  21. Kreibich, G., Czako-Graham, M., Grebenau, R., Mok, W., Rodriguez-Boulan, E. and Sabatini, D.D. (1978) Characterization of the ribosomal binding site in rat liver rough microsomes: Ribophorins I and II, two integral membrane proteins related to ribosome binding. J. Supramolec. Structure 8: 279–302CrossRefGoogle Scholar
  22. Kreibich, G., Marcantonio, E. E. and Sabatini, D. D. (1983) In: Methods Enzymology, Academic Press, New York (S. Fleischer and B. Fleischer, eds.), 96: 520–530Google Scholar
  23. Krieg, U. C., Walter, P. and Johnson, A. E. (1986) Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. USA 83: 8604–8608PubMedCrossRefGoogle Scholar
  24. Kurzchalia, T. V., Wiedmann, M., Girshovich, A.S., Bochkareva, E. S., Bielka, H. and Rapoport, T.A. (1986) The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of the signal recognition particle. Nature 320: 634–636PubMedCrossRefGoogle Scholar
  25. Lauffer, L., Garcia, P.D., Harkins, R.N., Coussens, L., Ullrich, A. and Walter, P. (1985) Topology of signal recognition particle receptor in endoplasmic reticulum membrane. Nature, 318: 334–338PubMedCrossRefGoogle Scholar
  26. Lipp, J. and Dobberstein, B. (1986) Signal recognition particle-dependent membrane insertion of mouse invariant chain: A membrane-spanning protein with a cytoplasmically exposed amino terminus. J. Cell Biol., 102: 2169–2175PubMedCrossRefGoogle Scholar
  27. Lipp, J., Dobberstein, B. and Haeuptle, M-T. (1987) Signal recognition particle arrests elongation of nascent secretory and membrane proteins at multiple sites in a transient manner. J. Biol. Chem. 262: 1680–1684PubMedGoogle Scholar
  28. Lively, M. O. and Walsh, K.A. (1983) Hen oviduct signal peptidase is an integral membrane Protein. J. Biol. Chem. 258: 9488–9495PubMedGoogle Scholar
  29. Marcantonio, E. E., Amar-Costesec, A. and Kreibich, G. (1982) Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J. Cell Biol. 99: 2254–2259CrossRefGoogle Scholar
  30. Meyer, D. I. and Dobberstein, B. (1980) Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell Biol. 92: 503–508CrossRefGoogle Scholar
  31. Meyer, D. I., Krause, E. and Dobberstein, B. (1982) Secretory protein translocation across membranes - the role of the docking protein. Nature, 297: 647–650PubMedCrossRefGoogle Scholar
  32. Mollay, C., Vilas, U. and Kreil, G. (1982) Cleavage of honeybee prepromelittin by an endoprotease from rat liver microsomes: Identification of intact signal peptide. Proc. Natl. Acad. Sci. USA 79: 2260–2263PubMedCrossRefGoogle Scholar
  33. Oliver, D. (1985) Protein secretion in Escherichia coli. Ann. Rev. Microbiol. 39: 615–648CrossRefGoogle Scholar
  34. Prehn, S., Nürnberg, P. and Rapoport, T. A. (1981) A receptor for signal elements of secretory proteins in rough endoplasmic reticulum membranes. FEBS Letters, 123: 79–84.PubMedCrossRefGoogle Scholar
  35. Rapoport, T.A. and Wiedmann, M. (1985) Application of the signal hypothesis to the incorporation of integral membrane proteins. Current topics in membranes and transport. 24: 1–63Google Scholar
  36. Rothblatt, J.A. and Meyer, D. I. (1986) Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell, 44: 619–628PubMedCrossRefGoogle Scholar
  37. Schlenstedt, G. and Zimmermann, R. (1987) Import of frog prepropeptide Gla into microsomes requires ATP but does not involve docking protein or ribosomes. EMBO J. 6: 699–703PubMedGoogle Scholar
  38. Scoulica, E., Krause, E., Meese, K. and Dobberstein, B. (1987) Disassembly and domain structure of the proteins in the signal-recognition particle. Eur. J. Biochem. 163: 519–528PubMedCrossRefGoogle Scholar
  39. Siegel, V. and Walter, P. (1985) Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J. Cell Biol. 100: 1913–1921PubMedCrossRefGoogle Scholar
  40. Siegel. V. and Walter, P. (1986) Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320: 81–84PubMedCrossRefGoogle Scholar
  41. Tajima, S., Lauffer, L., Rath, V. L. and Walter, P. (1986) The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J. Cell Biol. 103: 1167–1178PubMedCrossRefGoogle Scholar
  42. Ullu, E., Murphy, S. and Melli, M. (1982) Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an ALU sequence. Cell, 29: 195–202PubMedCrossRefGoogle Scholar
  43. von Heijne, G. and Blomberg, C. (1979) Trans-membrane translocation of proteins: The direct transfer model. Eur. J. Biochem. 97: 175–181CrossRefGoogle Scholar
  44. von Heijne, G. (1985) Structural and thermodynamic aspects of the transfer of proteins into and across membranes. Current topics in membranes and transport, 24: 151–179Google Scholar
  45. Walter, P., Jackson, R. C., Marcus, M. M., Lingappa, V. R. and Blobel, G. (1979) Tryptic dissection and reconstitution of translocation activity for nascent presecretory proteins across microsomal membranes. Proc. Natl. Acad. Sci. USA, 76: 1795–1799PubMedCrossRefGoogle Scholar
  46. Walter, P. and Blobel, G. (1980) Purification of a membrane-associated protein complex required for protein translocation asross the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 77: 7112–7116PubMedCrossRefGoogle Scholar
  47. Walter, P. and Blobel, G. (1981a) Translocation of proteins across the endoplasmic reticulum II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91: 551–556PubMedCrossRefGoogle Scholar
  48. Walter, P. and Blobel, G. (1981b) Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91: 557–561PubMedCrossRefGoogle Scholar
  49. Walter, P. and Blobel, G. (1983) Disassembly and reconstitution of signal recogniton particle. Cell, 34: 525–533PubMedCrossRefGoogle Scholar
  50. Walter, P. and Lingappa, V. R. (1986) Mechanism of protein translocation across the endoplasmic reticulum membrane. Ann. Rev. Cell Biol. 2: 499–516PubMedCrossRefGoogle Scholar
  51. Warren, G. and Dobberstein, B. (1978) Protein transfer across microsomal membranes reassembled from separated membrane components. Nature, 273: 569–571PubMedCrossRefGoogle Scholar
  52. Waters, M. G. and Blobel, G. (1986) Secretory protein translocation in a yeast cell free system can occur posttranslationally and requires ATP hydrolysis. J. Cell Biol. 102: 1543–1550PubMedCrossRefGoogle Scholar
  53. Waters, M. G., Chirico, W. J. and Blobel, G. (1986) Protein translocation across the yeast microsomal membrane is stimulated by a soluble factor. J. Cell Biol. 103: 2629–2636PubMedCrossRefGoogle Scholar
  54. Wickner, W.T. and Lodish, H.F. (1985) Multiple mechanisms of protein insertion into and across membranes. Science 230: 400–407PubMedCrossRefGoogle Scholar
  55. Wiedmann, M., Kurzchalia, T. V., Bielka, H. and Rapoport, T. A. (1987) Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking. J. Cell Biol. 104: 201–208PubMedCrossRefGoogle Scholar
  56. Wiedmann, M., Kurzchalia, T. V., Hartmann, E. and Rapoport, T.A. (1987) A signal sequence receptor in the endoplasmic reticulum membrane Nature, 328: 830–833PubMedCrossRefGoogle Scholar
  57. Zwieb, C. (1985) The secondary structure of the 7SL RNA in the signal recognition particle: functional implications. Nucleic acids Res. 13: 6105–6124PubMedCrossRefGoogle Scholar
  58. Zwieb, C. and Ullu, E. (1986) Identification of dynamic sequences in the central domain of 7SL RNA. Nucleic Acids Res. 14: 4639–4657PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Bernhard Dobberstein
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations