Skip to main content

The Assembly and Transfer of Oligosaccharide Chains to Proteins

  • Conference paper
Membrane Biogenesis

Part of the book series: NATO ASI Series ((ASIH,volume 16))

  • 72 Accesses

Abstract

Starting about two decades ago a series of developments provided us with a basic understanding of the mechanism of synthesis of membrane and secretory glycoproteins. These were the distinction between membrane-bound and free polysomes (Redman, 1969), the discovery of the signal peptide (Blobel & Sabatini, 1971; Milstein et al., 1972), the demonstration of the cotranslational glycosylation of ovalbumin (Kiely et al., 1976), the findings that, in accord with the signal hypothesis, newly translated and glycosylated proteins were sequestered within the lumen of the endoplasmic reticulum (Lingappa et al., 1978) and that viral coat proteins were inserted with their carbohydrate chains facing the lumen (Katz et al., 1977). All of these findings set the scene for in-depth biochemical studies on the mechanisms of assembly of the oligosaccharide chains of the glycoproteins. These studies (summarized in Parodi & Leloir, 1979; Struck & Lennarz, 1980; Hubbard & Ivatt, 1981; and Kornfeld & Kornfeld, 1985) have led to the following general conclusions:

  1. 1.

    All eukaryotic cells are capable of the synthesis of glycoproteins that are destined to become components of the plasma membrane. In addition, many cell types commit a significant portion of their protein biosynthetic activity to the synthesis of secreted and/or lysosome-packaged glycoproteins.

  2. 2.

    The synthesis of membrane, secretory, or lysosomal glycoproteins is a highly segregated process that occurs within an intracellular membrane system composed of the endoplasmic reticulum, transfer vesicles, Golgi apparatus, and secretory vesicles. During their translation, glycosylation and processing the glycoproteins are completely isolated from the cytoplasm and travel to the cell surface (in the case of membrane glycoproteins), to the extracellular environment (in the case of secretory glycoproteins), or to the lysosomes (in the case of lysosomal enzymes) as part of, or within, these membrane compartments.

  3. 3.

    The assembly of N-linked oligosaccharide chains occurs in the endoplasmic reticulum and involves the stepwise preassembly of the oligosaccharide chain on dolichyl phosphate followed by en bloc transfer of the oligosaccharyl unit to the growing polypeptide chain.

  4. 4.

    Subsequent modifications to the oligosaccharide chains of N-linked glycoproteins are initiated in the rough endoplasmic reticulum and completed in the Golgi apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anumula KR, Spiro RG (1983) Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. J Biol Chem 258: 15274–15282

    PubMed  CAS  Google Scholar 

  • Ballou L, Gopal P, Krummei B, Tammi M, Ballou C (1986) A mutation that prevents glycosylation of the lipid-linked oligosaccharide precursor leads to undergly cosylation of secreted yeast invertase. Proc Natl Acad Sci USA 83: 3081–3085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bause E (1983) Active-site-directed inhibition of asparagine N-glycosyltransferases with epoxy-peptide derivatives. Biochem J 209: 323–330

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bause E (1984) Model studies on N-glycosylation of proteins. Biochem Soc Trans 12: 514–517

    PubMed  CAS  Google Scholar 

  • Bergman LW, Kuehl NM (1977) Addition of glucosamine and mannose to nascent immunoglobulin heavy chains. Biochemistry 16: 4490–4497

    Article  PubMed  CAS  Google Scholar 

  • Bergman LW, Kuehl WM (1978) Temporal relationship of translation and glycosylation of immunoglobulin heavy and light chains. Biochem 17: 5174–5180

    Article  CAS  Google Scholar 

  • Blobel G, Sabatini DD (1971) Ribosome-membrane interaction in eukaryotic cells. In: Mason, LA (ed) Biomembranes, Plenum Publishing Co., New York, p. 193

    Google Scholar 

  • Carson DD, Earles BJ, Lennarz WJ (1981) Enhancement of protein glycosylation in tissue slices by dolichylphosphate. J Biol Chem 256: 11552–11557

    PubMed  CAS  Google Scholar 

  • Catterall JB, O’Malley BW, Robertson MA, Staden R, Tanaka Y, Brownlee GG (1978) Nucleotide sequence homology at 12 intron-exon junctions in the chick ovalbumin gene. Nature (London) 275: 510–513

    Article  CAS  Google Scholar 

  • Chen WW, Lennarz WJ (1977) Metabolism of lipid-linked N-acetylglucosamine intermediates. J Biol Chem 252: 3473–3479

    PubMed  CAS  Google Scholar 

  • Coates SW, Gurney T, Sommers LW, Yeh M, Hirschberg CB (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255: 9225–9229

    PubMed  CAS  Google Scholar 

  • deRopp JS, Troy FA (1984) Chemical synthesis and 2H NMR investigations of polyisoprenols: Dynamics in model membranes. Biochemistry 23: 2691–2695

    Article  CAS  Google Scholar 

  • deRopp JS, Troy FA (1985) 2H NMR investigation of the organization and dynamics of polyisoprenols in membranes. J Biol Chem 260: 15669–15674

    CAS  Google Scholar 

  • deRopp JS, Knudsen MJ, Troy FA (1987) 2H NMR investigation of the dynamics and conformation of polyisoprenols in model membranes. Chemica Scripta 27: 101–108

    CAS  Google Scholar 

  • Evans EA, Gilmore R, Blobel G (1986) Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA 83: 581–585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1: 447–488

    Article  PubMed  CAS  Google Scholar 

  • Gilmore R, Blobel G (1985) Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell 42: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Glabe CG, Hannover JA, Lennarz WJ (1980) Glycosylation of ovalbumin nascent chains. The spatial relationship between translation and glycosylation. J Biol Chem 255: 9236–9242

    PubMed  CAS  Google Scholar 

  • Hanover JA, Lennarz WJ (1979) The topoloical orientation of N,N1-diacetylchito biosylpyrophosphoryldolichol in artificial and natural membranes. J Biol Chem 254: 9237–9246

    PubMed  CAS  Google Scholar 

  • Hanover JA, Lennarz WJ (1980) N-Linked glycoprotein assembly: evidence that oligosaccharide attachment occurs within the lumen of the endoplasmic reticulum. J Biol Chem 255: 3600–3604

    PubMed  CAS  Google Scholar 

  • Hanover JA, Lennarz WJ (1981) Transmembrane assembly of membrane and secretory glycoproteins. Arch Biochem Biophys 211: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Hanover JA, Lennarz WJ (1982) Transmembrane assembly of N-linked glycopro teins: Studies on the topology of saccharide-lipid synthesis. J Biol Chem 257: 2787–2794

    PubMed  CAS  Google Scholar 

  • Hansen W, Garcia DP, Walter, P (1986) In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent post-translational translocation of the prepro-α-factor. Cell 45: 397–406

    Article  PubMed  CAS  Google Scholar 

  • Hart GW, Brew K, Grant GA, Bradshaw RA, Lennarz WJ (1979) Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. J Biol Chem 254: 9747–9753

    PubMed  CAS  Google Scholar 

  • Haselbeck A, Tanner W (1982) Dolichol phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci USA 79: 1520–1524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50: 555–583

    Article  PubMed  CAS  Google Scholar 

  • Huftaker TC, Robbins PW (1983) Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci USA 80: 7466–7470

    Article  Google Scholar 

  • Kaplan HA, Welply JK, Lennarz WJ (1987) Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. BBA — Reviews on Biomembranes, 906: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Katz FN, Rothman JE, Lingappa UR, Blobel G, Lodish HR (1977) Membrane assembly in vitro: synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc Natl Acad Sci USA 74: 3278–3282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiely ML, McKnight GS, Schimke RT (1976) Studies on the attachment of carbohydrate to ovalbumin nascent chains in hen oviduct. J Biol Chem 251: 5490–5495

    PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S, Gregory W, Chapman A (1979) Class E thy-1 negative mouse lymphoma cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides. J Biol Chem 254: 11649–11654

    PubMed  CAS  Google Scholar 

  • Kreibich G, Ulrich BC, Sabatini DD (1978) Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II membrane proteins characteristic of rough microsomes. J Cell Biol 77: 464–487

    Article  PubMed  CAS  Google Scholar 

  • Kronquist KE, Lennarz WJ (1978) Enzymatic conversion of proteins to glycoproteins by lipid-linked saccharides. A study of potential exogenous acceptor proteins. J Supramol Struct, 8: 51–65

    Article  PubMed  CAS  Google Scholar 

  • Lau JTY, Welply JK, Shenbagamurthi P, Naider F, Lennarz WJ (1983) Substrate recognition by oligosaccharyl transferase: inhibition of co-translational glycosylation by acceptor peptides. J Biol Chem 258: 15255–15260.

    PubMed  CAS  Google Scholar 

  • Lingappa VR, Lingappa JR, Prasad R, Ebner KE, Blobel G (1978) Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc Natl Acad Sci USA 75: 2338–2341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall RD (1974) The nature and metabolism of the carbohydrate-peptide linkage of glycoproteins. Biochem Soc Symp 40: 17–26

    PubMed  CAS  Google Scholar 

  • McCloskey MA, Troy FA (1980) Paramagnetic isoprenoid carrier lipids: Dispersion and dynamics in lipid membranes. Biochemistry 19: 2061–2066

    Article  PubMed  CAS  Google Scholar 

  • Milstein C, Brownlee G, Harrison T, Matthews MD (1972) A possible precursor of immunoglobulin light chains. Nature New Biol 239: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Thibodeau SN, Rogers G, Boime I (1980) Cotranslational sequestration of egg white proteins and placental lactogen inside membrane vesicles. Anal NY Acad Sci 343: 192–209

    Article  CAS  Google Scholar 

  • Parodi AJ, Leloir LF (1979) The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta 559: 1–37

    Article  PubMed  CAS  Google Scholar 

  • Perez M, Hirschberg CB (1985) Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J Biol Chem 260: 4671–4678

    PubMed  CAS  Google Scholar 

  • Perez M, Hirschberg CB (1986a) Transport of sugar nucleotides and adenosine 3’-phosphate 5’-phosphosulfate into vesicles derived from the Golgi apparatus. Biochim Biophys Acta 864: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Perez M, Hirschberg CB (1986b) Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J Biol Chem 261: 6822–6830

    PubMed  CAS  Google Scholar 

  • Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74: 134–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Redman CM (1969) Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver. J Biol Chem 244: 4308–4315

    PubMed  CAS  Google Scholar 

  • Ronnett GV, Lane MD (1981) Post-translational glycosylation-induced activation of aglycoinsulin receptor accumulated during tunicamycin treatment. J Biol Chem 256: 4704–4707

    PubMed  CAS  Google Scholar 

  • Rothblatt JA, Meyer DI (1986) Secretion in yeast: translocation and glycosylation of prepro-α-factor in vitro can occur via an ATP-dependent post-translational mechanism. EMBO Journal 5: 1031–1036

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rothman JE, Lodish HF (1975) Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 269: 775–780

    Article  Google Scholar 

  • Sharma CB, Lehle L, Tanner W (1981) N-Glycosylation of yeast proteins. Eur J Biochem 116: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Sheares BT, Robbins PW (1986) Glycosylation of ovalbumin in a heterologous cell: Analysis of oligosaccharide chains of the cloned glycoprotein in mouse L cells. Proc Natl Acad Sci USA 83: 1993–1997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Snider MD, Robbins PW (1982) Transmembrane organization of protein glycosylation. Membrane oligosaccharide-lipid is coated on the luminal side of microsomes from Chinese hamster ovary cells. J Biol Chem 257: 6796–6801

    PubMed  CAS  Google Scholar 

  • Snider MD, Rogers OC (1984) Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell 36: 753–761

    Article  PubMed  CAS  Google Scholar 

  • Snider MD, Sultzman LA, Robbins PW (1980) Transmembrane location of oligosaccharide-lipid synthesis in microsomal vesicles. Cell 21: 385–392

    Article  PubMed  CAS  Google Scholar 

  • Struck DK, Lennarz WJ (1980) The role of saccharide lipids in glycoprotein synthesis. In: Lennarz WJ (ed) The Biochemistry of Glycoproteins and Proteoglycans. Plenum Publishing Co., New York, p 35

    Chapter  Google Scholar 

  • Struck DK, Lennarz WJ, Brew K (1978) Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with α-lactalbumin. J Biol Chem 253: 5786–5794

    PubMed  CAS  Google Scholar 

  • Tucker P, Pestka S (1977) De novo synthesis and glycosylation of the MOPC-46B mouse immunoglobulin light chains in cell-free extracts. J Biol Chem 252: 4474–4486

    PubMed  CAS  Google Scholar 

  • Valtersson C, van Duyn G, Verkleij AJ, Chojnacki T, deKruijff B, Dallner G (1985) The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. J Biol Chem 260: 2742–2751

    PubMed  CAS  Google Scholar 

  • Waechter CJ, Lennarz WJ (1976) The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem 45: 95–112

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Blobel G (1986) Secretory protein translocation in a yeast cell free system can occur post translationally and requires ATP hydrolysis. J Cell Biol 102: 1543–1550

    Article  PubMed  CAS  Google Scholar 

  • Welply JK, Shenbagamurthi P, Lennarz WJ, Naider F (1983) Substrate recognition by oligosaccharyl transferase: studies on glycosylation of modified Asn-X-Thr/Ser tripeptides. J Biol Chem 258: 11856–11863

    PubMed  CAS  Google Scholar 

  • Welply JK, Shenbagamurthi P, Naider F, Park HR, Lennarz WJ (1985) Active site-directed photoaffinity labeling and partial characterization of oligosaccharyltransferase. J Biol Chem 260: 6459–6465

    PubMed  CAS  Google Scholar 

  • Welply JK, Kaplan HA, Shenbagamurthi P, Naider F, Lennarz WJ (1986) Studies on properties of membrane-associated oligosaccharyltransferase using an active site-directed photoaffinity probe. Arch Biochem Biophys 246: 808–819

    Article  PubMed  CAS  Google Scholar 

  • Wieland F, Heitzer R, Schaefer W (1983) Asparaginylglucose: Novel type of carbohydrate linkage. Proc Natl Acad Sci USA 80: 5470–5474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lennarz, W.J. (1988). The Assembly and Transfer of Oligosaccharide Chains to Proteins. In: Op den Kamp, J.A.F. (eds) Membrane Biogenesis. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73184-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73184-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73186-0

  • Online ISBN: 978-3-642-73184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics