Skip to main content

The Application of Image Analysed Fluorescence Microscopy for Characterising Planktonic Bacteria and Protists

  • Conference paper
Protozoa and Their Role in Marine Processes

Part of the book series: NATO ASI Series ((ASIG,volume 25))

Abstract

Fluorescence microscopy has contributed to a major and recent shift in our understanding of plankton ecology. (Pomeroy 1974, Sieburth 1977, Azam et al. 1983, Ducklow 1983). This shift is illustrated by an increased awareness of the important role microorganisms play in marine carbon and nutrient cycles (Williams 1981, Goldman and Caron 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt-Jovin DJ, Robert-Nicoud M, Kaufman SJ, Jovin TM (1985) Fluorescence digital imaging microscopy in cell biology. Science 230:247–256

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–495

    Article  PubMed  CAS  Google Scholar 

  • Børnsen PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51:1199–1204

    Google Scholar 

  • Bright GR, Taylor DL (1986) Imaging at low light level in fluorescence microscopy. In: Taylor DL, Waggoner AS, Lanni F, Murphy RF, Birge RR (eds) Applications of Fluorescence in the Biomedical Sciences, Alan R Liss, Inc New York

    Google Scholar 

  • Caron D (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other methods. Appl Environ Microbiol 46:491–498

    PubMed  CAS  Google Scholar 

  • Caron DA, Pick FR, Lean DRS (1985) Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J Phycol 21:171–175

    Article  Google Scholar 

  • Carpenter EJ, Chang J (1988) Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method. Mar Ecol Progr Ser 43:105–111

    Article  Google Scholar 

  • Castleman KR (1979) Digital Image Processing. Prentice-Hall, Englewood Cliffs NJ

    Google Scholar 

  • Chang J, Carpenter EJ (1988) Species-specific phytoplankton growth rates via diel DNA synthesis cycles. II. DNA quantification and model verification in the dinoflagellate Heterocapsa trlquetra. Mar Ecol Prog Ser 44:287–296

    Article  CAS  Google Scholar 

  • Chrzanowski TH, Crotty RD, Hubbard GJ (1988) Seasonal variation in cell volume of epilimnetic bacteria. Microb Ecol 16:155–163

    Article  Google Scholar 

  • Cowden RR (1985) Fluorescent cytochemistry of living cells. Amer Biotech Lab Nov/Dec 1985, p. 8–14

    Google Scholar 

  • Davis PG, Caron DA, Johnson PW, Sieburth JMcN (1985) Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions. Mar Ecol Prog Ser 21:15–26

    Article  Google Scholar 

  • Ducklow HW (1983) Production and fate of bacteria in the oceans. Bioscience 33:494–501

    Article  Google Scholar 

  • Estep KW, Maclntyre F, Hjorleifsson E, Sieburth JMcN (1986) Maclmage: a user-friendly image-analysis system for the accurate mensuration of marine organisms. Mar Ecol Prog Ser 33:243–253

    Article  Google Scholar 

  • Ferguson RL, Rublee P (1976) Contribution of bacteria to standing crop of coastal plankton. Limnol Oceanogr 21:141–145

    Article  Google Scholar 

  • Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    PubMed  CAS  Google Scholar 

  • Giloh H, Sedat JW (1982) Fluorescence microscopy reduced photo-bleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255

    Article  PubMed  CAS  Google Scholar 

  • Goldman JC, Caron DA (1985) Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res. 32:899–915.

    Article  Google Scholar 

  • Haas LW (1982) Improved epifluorescence microscopy for observing planktonic micro-organisms. Annal Inst Oceanogr 58(S):261–266

    Google Scholar 

  • Haralick RM, Shapiro LG (1985) Image segmentation techniques. Computer Vision, Graphics and Image Processing 29:100–132

    Article  Google Scholar 

  • Hiraoka Y, Sedat JW, Agard DA (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science 238:36–41

    Article  PubMed  CAS  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  • Inoue S (1986) Video Microscopy. Plenum Press, New York, USA

    Google Scholar 

  • Johnson PW, Sieburth JMcN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935

    Article  Google Scholar 

  • Kristian J, Blouke M (1982) Charge-coupled devices in astronomy Sci Amer 247(4):66–74

    Article  Google Scholar 

  • McManus GB, Fuhrman JA (1986) Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol Oceanogr 31:420–426

    Article  Google Scholar 

  • Niblack W (1985) An Introduction to Digital Image Processing. Strandberg Publishing Co. Birkeroed, Denmark

    Google Scholar 

  • Pavlidis T (1982) Algorithms for Graphics and Image Processing. Computer Science Press, Inc. Rockville, MD

    Google Scholar 

  • Pomeroy L (1974) The ocean’s food web, a changing paradigm. Bioscience 24:499–504

    Article  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Schlimpert O, Uhlmann D, Schuller M, Hohne E (1980) Automated pattern recognition of phytoplankton – procedure and results. Int. Rev. ges. Hyarobiol. 65:427–437

    Article  Google Scholar 

  • Sheppard CJR (1987) Scanning optical microscopy. In: Barer R, Cosslett VE (eds) Advances in Optical and Electron Microscopy, Vol 10. Academic Press, New York

    Google Scholar 

  • Sherr EB, Snerr BF, Fallon RD (1989) Use of monodisperse, fluorescently labelled bacteria to measure in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    Google Scholar 

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sieburth JMcN (1977) International Helgoland symposium: Convener’s report on the informal session on biomass and groductivity of microorganisms in planktonic ecosystems. Helgol wiss Meeresunters 30:697–794

    Article  Google Scholar 

  • Sieburtn JMcN, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263

    Article  Google Scholar 

  • Sieracki ME, Johnson PW, Sieburth JMcN (1985) Detection, enumeration and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microbiol 49:799–810

    PubMed  CAS  Google Scholar 

  • Sieracki ME, Haas LW, Caron DA, Lessard EJ (1987) The effect of fixation on particle retention by microflagellates: underestimation of grazing rates. Mar Ecol Prog Ser 38:251–258

    Article  Google Scholar 

  • Sieracki ME, Viles C, Webb KL (1989A) An algorithm to estimate cell biovolume using image analyzed microscopy. Cytometry 10:551–557

    Article  CAS  Google Scholar 

  • Sieracki ME, Reichenbach S, Webb KL (1989b) An evaluation of automated threshold selection methods for accurate sizing of microscopic fluorescent cells by image analysis. Appl Environ Microbiol. 55:2762–2772

    PubMed  CAS  Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine plankton ciliates found to contain functional chloroplasts. Nature 326:790–792

    Article  Google Scholar 

  • Tabor PS, Neihof RA (1982) Improved method for determination of respiring individual microorganisms in natural waters. Appl Environ Microbiol 43:1249–1255

    PubMed  CAS  Google Scholar 

  • Turley C, Lochte K (1986) Diel changes in the specific growth rate and mean cell volume of natural bacterial communities in two different water masses in the Irish Sea. Microb Ecol 12:271–282

    Article  Google Scholar 

  • Uhlmann D, Schlimpert O, Uhlmann W (1978) Automated phytoplankton analysis by a pattern recognition method. nt. Rev. ges. Hydrobiol. 63:575–583.

    Article  Google Scholar 

  • Van Dilla MA, Langlois RG, Pinkel D, Yajko D, Hadley WK (1983) Bacterial characterization by flow cytometry. Science 220:620–621

    Article  PubMed  Google Scholar 

  • Vossepoel AM, Smeulders AWM, Van den Broek K (1979) DIODA: delineation and feature extraction of microscopical objects. Computer Programs in Biomedicine 10:231–244

    Article  PubMed  CAS  Google Scholar 

  • Walter RJ, Berns MW (1986) Digital image processing and analysis. In: Inoue S. Video Microscopy. Plenum Press, New York, USA

    Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294.

    Article  Google Scholar 

  • Watson SW, Novitsky TJ, Quinby HL, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 33:940–946

    PubMed  CAS  Google Scholar 

  • Williams PJ LeB (1981) Incorporation of microheterotrophic Processes into the classical paradigm of the planktonic ood web. Kieler Meeresforsch S 5:1–28

    Google Scholar 

  • Williams PJ LeB (1984) Bacterial production in the marine food chain: the emperor’s new suit of clothes? In: Fasham MJR (ed) Flows of Energy and Materials in Marine Ecosystems. Plenum Press, New York, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sieracki, M.E., Webb, L.K. (1991). The Application of Image Analysed Fluorescence Microscopy for Characterising Planktonic Bacteria and Protists. In: Reid, P.C., Turley, C.M., Burkill, P.H. (eds) Protozoa and Their Role in Marine Processes. NATO ASI Series, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73181-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73181-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73183-9

  • Online ISBN: 978-3-642-73181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics