Skip to main content

Mixotrophy in Marine Planktonic Ciliates: Physiological and Ecological Aspects of Plastid-Retention by Oligotrichs

  • Conference paper
Protozoa and Their Role in Marine Processes

Part of the book series: NATO ASI Series ((ASIG,volume 25))

Abstract

Although oligotrichous ciliates (subclass Choreotrichia, order Choreotrichida) are often regarded as strict phagotrophs, deriving their nutrition from the ingestion of other cells, many species contain pigmented bodies which have long been thought to be residues of digestion of algal cells and only recently have been shown to be algal chloroplasts (Kahl 1932, Burkholder et al. 1967, Taylor 1982, McManus and Fuhrman 1986). Transmission electron microscopy has demonstrated that many marine oligotrichs retain isolated chloroplasts derived from phytoplankton (Blackbourn et al. 1973, Laval-Peuto and Febvre 1986, Jonsson 1987, Stoecker and Silver 1987). A substantial proportion of the planktonic oligotrich fauna contains chloroplasts and is probably mixotrophic, deriving nutrition from both phagocytosis and photosynthesis (Laval-Peuto et al. 1986, Stoecker et al. 1987, Laval-Peuto and Rassoulzadegan 1988 ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson OR (1983) Radiolaria. Springer-Verlag New York

    Book  Google Scholar 

  • Blackbourn DJ, Taylor FJR, Blackbourn J (1973) Foreign organelle retention by ciliates. J Protozool 20:286–288

    Google Scholar 

  • Burkill PH, Mantoura RFC, Llewellyn CA, Owens NJP (1987) Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar Biol 93:581–590

    Article  CAS  Google Scholar 

  • Burkholder PR, Burkholder LM, Almodovar LR (1967) Carbon assimilation of marine flagellate blooms in neritic waters of southern Puerto Rico. Bulletin of Marine Science 17:1–15

    CAS  Google Scholar 

  • Caron DA, Goldman JC (1988) Dynamics of protistan carbon and nutrient cycling. J Protozool 32:247–249

    Google Scholar 

  • Conover RJ Jr (1982) Interrelations between microzooplankton and other plankton organisms. Ann Inst Oceanogr Paris 58 (S):31–46

    Google Scholar 

  • Dale T (1987) Diel vertical distribution of planktonic ciliates in Lindaspollene, western Norway. Mar Microbial Food Webs 2:15–28

    Google Scholar 

  • Dale T, Dahl E (1987) Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J Plankton Res 9:871–897

    Article  Google Scholar 

  • Dodge JD (1973) The fine structure of algal cells. Academic Press New York Fauré-Fremiet E (1924) Contribution à la connaissance des infusoires planktoniques. Bull Biol Fr Belg 19 Suppl 6:1–171

    Google Scholar 

  • Fauré-Fremiet E (1969) Remarques sur la systematique des cilies Oligotrichida. Protistol 5:345–352

    Google Scholar 

  • Eppley RW, Coastsworth JL, Solorzano L (1979) Studies of nitrate reductase in marine phytoplankton. Limnol Oceanogr 14:194–205

    Article  Google Scholar 

  • Estep KW, Davis PD, Keller MD, Sieburth JMcN (1986) How important are oceanic algal nanoflagellates in bacterivory? Limnol Oceanogr 31:646–650

    Article  Google Scholar 

  • Gifford DJ (1985j Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267

    Article  Google Scholar 

  • Gifford DJ, Dagg MJ (ms) The microzooplankton-mesozooplankton link: Consumption of protozoa by calanoid copepods. MS

    Google Scholar 

  • Glover HE (1980; Assimilation numbers in cultures of marine phytoplankton. J. Plankton Res 20:69–79

    Article  Google Scholar 

  • Goldman JC, Dennett MR (1985) Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing. J Exp Mar Biol Ecol 86:47–58

    Article  Google Scholar 

  • Hecky RE, Kling HJ (1981) The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: Species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol Oceanogr 26:548–564

    Article  Google Scholar 

  • Jonsson PR (1986) Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277

    Article  Google Scholar 

  • Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar Microbial Food Webs 2:55–68

    CAS  Google Scholar 

  • Kahl A T (1932) Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Intusion) s. Spirotricha. In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenenden Meeresteile. Gustav Fisher Jena 18:1–180

    Google Scholar 

  • Klein B, Geiskes WWC, Kraay G (1986) Digestion of chlorophylls and carotenoids by the marine protozoan Oxyrrhis marina studied by HPLC analysis of algal pigments. J Plank Res 8:827–836

    Article  CAS  Google Scholar 

  • Laval-Peuto M, Febvre M (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora Oligotrichina). Bio Systems 19:137–158

    Article  PubMed  CAS  Google Scholar 

  • Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159:99–110

    Article  Google Scholar 

  • Laval-Peuto M, Salvano P, Gayol P, Greuet C (1986) Mixotrophy in marine planktonic ciliates: Ultrastructural study or Tontonia appendiculariformis [Ciliophora. Oligotrichina). Mar Microbial Food Webs 1:81–104

    Google Scholar 

  • Lee JJ (1980) Informational energy flow as an aspect of protozoan nutrition. J Protozool 27:5–9

    Google Scholar 

  • Lee JJ, Lee MJ, Weis DS (1985) Possible adaptive value of enaosymbionts to their protozoan hosts. J Protozool 32:391–382

    CAS  Google Scholar 

  • Lee J, Soldo AT, Reisser W, Lee MJ, Jean KW, Görtz HD (1985) The extent of algal and bacterial endosymbioses in protozoa. J Protozool 32:380–382

    Google Scholar 

  • Leech RM (1980) The survival, division and differentiation of higher plant plastids outside the leaf cell, In: Reinert J (ed) Chloroplasts Spinger-Verlag, Berlin, p 255

    Google Scholar 

  • Li Wit, Goldman JC (1981); Problems in estimating growth rates of marine phytoplankton from short-term C assays. Microbial Ecol 7:113–121

    Article  Google Scholar 

  • Lindhölm T (1985) Mesodinium rubrum — a unique photosynthetic ciliate. Adv In Aquatic Microbiology 3:1–48

    Google Scholar 

  • Lopez E (1979) Algal chloroplasts in the protoplasm of three species of benthic foraminifera : Taxonomic affinity, viability and persistence. Mar biol 53:201–211

    Article  CAS  Google Scholar 

  • Malone T (1980) Algal Size, In: Morris I (ed) The Physiological Ecology of Phytoplankton. Univ of California Press Berkeley California, p 433

    Google Scholar 

  • Mattoo AK, Hoffaman-Falk H, Marder JB, Edelman M (1984) Regulation of protein metabolism: Coupling of Photosynthetic electron transport to in vivo degradation of he rapidly metabolized 32-kilodalton protein of the chlorqplast membrane. PNAS, USA 81:1380–1384

    Article  CAS  Google Scholar 

  • McManus GB, Fuhrman JA (1986) Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, USA. J Plankton Res 8:317–327

    Article  Google Scholar 

  • Michaels AF (1988) Vertical distribution and abundance of Acantharia and their symbionts. Mar Biol 97:559–569

    Article  Google Scholar 

  • Montagnes DJS (1986) The annual cycle of planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: Estimates of biomass and production. Ms Thesis, University of Guelph Guelph Ontario Canada, pp 114

    Google Scholar 

  • Montagnes DJS, Lynn D H, Stoecker DK, Small EB (1988) Taxonomic descriptions of one new species and redescription of four species in the family Strombidiidae (Ciliophora, Oligotrichida). J Protozool 35:189–197

    Google Scholar 

  • Morel A, Bricaud A (1986) Inherent optical properties of algal cells including picoplankton: Theoretical and experimental results, pp 521–559 In: Piatt T, Li WK (eds) Photosynthetic Picoplankton. Can Bull Fish Aqu Sci 214

    Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z (1983) Carbon budgets in symbiotic associations, pp 649–-658 In: Shenk HEA, Schwemmler W (eds) Endocytobiology III. Walter de Gruyter Berlin

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis, Pergamon Press New York

    Google Scholar 

  • Patterson DJ, Dürrschmidt M (1987) Selective retention of chloroplasts by algivorous helioza (fortuitous chloroplast symbiosis?). European Journal of Protistology 23:51–55

    Article  Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. The American Naturalist 129:69–96

    Article  CAS  Google Scholar 

  • Provasoli L (1977) Ch. 5 Cultivation of animals. 5.1 Research cultivation. 5.11 Axenic cultivation, pp 1295–1320 In: Kinne O (ed) Marine Ecology, Vol 3 Wiley, New York

    Google Scholar 

  • Rassoulzadegan F (1977) Evolution annuelle des cilies pelagiques en Mediterranee nordoccidentale. I. Cilies oligotriches (non-tintinnides) (Oligotrichina). Ann Inst Oceanogr Paris 53:125–134

    Google Scholar 

  • Reid PC (1987) Mass encystment of a planktonic oligotrich ciliate. Mar Biol 95:221–230

    Article  Google Scholar 

  • Reith ME, Cattolico RA (1985a) In vitro chloroplast protein synthesis by the chromophytic alga Olisthoaiscus luteus Biochemistry 24:2550–2556

    Article  PubMed  CAS  Google Scholar 

  • Reith ME, Cattolico RA (1985b) In vivo chloroplast protein synthesis by the chromophytic alga Olisthoaiscus luteus Biochemistry 24:2556–2561

    Article  PubMed  CAS  Google Scholar 

  • Rivkin RB, Seliger HH (1981) Liquid scintillation counting for 14C uptake of single algal cells isolated from natural samples. Limnol Oceanogr 26:780–784

    Article  CAS  Google Scholar 

  • Rivkin KB (1985) Carbon-14 labelling patterns of individual marine phytoplankton from natural populations. Mar Biol 89:135-142

    Article  CAS  Google Scholar 

  • Rogerson A, Finlay BJ, Berninger U-G (in press) Sequestered chloroplasts in the freshwater ciliate Strombidium viride (Ciliophora: Oligotrichida). Trans Am Micrsc Soc

    Google Scholar 

  • Sherr EB, Sherr BF, Paffenhöfer GA (1986) Phagotrophic protozoa as food for metazoans: a “missing” link in marine pelagic food webs. Mar Microbial Food Webs 1:61–80

    Google Scholar 

  • Silver MW, Davoll PJ (1978) Loss of 14C activity after chemical fixation of phytoplankton: error source for autoradiography and other productivity measurements. Limnol Oceanogr 23:362–368

    Article  CAS  Google Scholar 

  • Small EB, Lynn DH (1985) Phylum Ciliophora, pp 393–575 In: Lee JJ, Hutner SH, Bovee EC (eds) Illustrated Guide to the Protozoa. Soc Protozool Special Pub Allen Press Lawrence Kansas

    Google Scholar 

  • Smith WO Jr, Barber RT (1979) A carbon budget for the autotrophic ciliate Mesodinium rubrum. J Phycol 15:27–33

    Article  Google Scholar 

  • Soo Hoo JB, Kiefer DA (1982) Vertical distribution of phaeopigments — 1. Simple grazing and photooxidative scheme or small particles. Deep-Sea Research 29:1539–1551

    Article  CAS  Google Scholar 

  • Sorokin YI (1981) Microheterotrophic organisms in marine ecosystems, pp 293–342. In:Longhurst AR ( ed) Analysis of Marine Ecosystems. New York Academic Press

    Google Scholar 

  • Steinback KE, Arntzen CJ, Bogorad L (1985) The physical organization and genetic determinants of the photosynthetic apparatus of chloroplasts, pp 1019 In: Steinback KE et al (eds) Molecular Biology of the Photosynthetic Apparatus. Cold Spring Harbour Laboratory

    Google Scholar 

  • Stoecker D (1984) Particle production by planktonic ciliates. Limnol Oceanogr 29:930–940

    Article  Google Scholar 

  • Stoecker DK, Eglotf DA (1987) Prédation by Acartia tonsa. Dana on planktonic ciliates and rotifers. J Exp Mar Biol Ecol 110:53–68

    Article  Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326: 79–792

    Article  Google Scholar 

  • Stoecker DK, Silver MW (1987) Chloroplast retention by marine planktonic ciliates. Endocytobiology III. Annals of the New York Academy of Sciences 503:562–565

    Article  Google Scholar 

  • Stoecker DK, Silver MW, Michaels AE, Davis LH(1988) Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar Biol 99:415–423

    Article  Google Scholar 

  • Stoecker DK, Silver MW, Michaels AE, Davis LH (submitted) Enslavement of algal chloroplasts by four Strombidium spp (Ciliophora, Oligorrichids). Mar Microbial Food Webs

    Google Scholar 

  • Stoecker DK, Taniguchi A, Michaels AE (in press) Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar Ecol Prog Ser

    Google Scholar 

  • Taylor RK (1982) Symbioses in marine microplankton. Ann Inst oceanogr Paris 58 (S):61–90

    Google Scholar 

  • Trench RK (1975) Of ‘leaves that crawl,: Functional chloroplasts in animal cells. Soc Exp Biol 29:229–265

    CAS  Google Scholar 

  • Trench RK (1980) Uptake, retention and function of chloroplasts in animal cells. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Waiter de Gruyter, Berlin, p 703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stoecker, D.K. (1991). Mixotrophy in Marine Planktonic Ciliates: Physiological and Ecological Aspects of Plastid-Retention by Oligotrichs. In: Reid, P.C., Turley, C.M., Burkill, P.H. (eds) Protozoa and Their Role in Marine Processes. NATO ASI Series, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73181-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73181-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73183-9

  • Online ISBN: 978-3-642-73181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics