Uptake and Release of Amino Acids from Synaptosomes

  • Elling Kvamme
  • Bjørg Roberg
  • Liv Johansen
Conference paper
Part of the NATO ASI Series book series (volume 20)

Abstract

Synaptosomes are isolated, sealed synaptic nerve endings with intact membrane structure and therefore well suited for uptake and release studies of neurotransmitters (1).

Keywords

Glycine Retina Proline Noradrenaline Alanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    WHITTAKER, V. P. (1972). The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In: Methods of Neurochemistry (Fried, R., ed), VoI. 2, Marcel Dekker, Inc., New York, pp. 1–52.Google Scholar
  2. 2).
    HALVARSSON, G. B., KARLSSON, I., SELLSTROM, A. (1985). The use of 3H-gamma-aminobutyric acid for transport studies with isolated nerve-terminals from rat brain. Life Sci. 37: 209–216.PubMedCrossRefGoogle Scholar
  3. 3).
    CHAN, P. H., KERLAN, R., FISHMAN, R. A. (1983). Reductions of gamma-aminobutyric acid and glutamate uptake and (Nat + K’)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40: 309–316.PubMedCrossRefGoogle Scholar
  4. 4).
    DEBLER, E. A., SERSHEN, H., LAJTHA, A., GENNARO, J. F. Jr. (1986). Superoxide radical-mediated alteration of synaptosome membrane structure and high-affinity gamma-[14C]-aminobutyric acid uptake. J. Neurochem. 47: 1804–1813.PubMedCrossRefGoogle Scholar
  5. 5).
    ZUCKER, R. S., LANDO, L. (1986). Mechanism of transmitter release: Voltage hypothesis and calcium hypothesis. Science 231: 574–579.PubMedCrossRefGoogle Scholar
  6. 6).
    LOGAN, W. J., SNYDER, S. H. (1971). Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234: 297–299.PubMedCrossRefGoogle Scholar
  7. 7).
    SIMON, J. R., MARTIN, D. L., KROLL, M. (1974). Sodium-dependent efflux and exchange of GABA in synaptosomes. J. Neurochem. 23: 981–991PubMedCrossRefGoogle Scholar
  8. 8).
    DEBLER, E. A., LAJTHA, A. (1987). High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamic acid in synaptosomal (P2) tissue: A kinetic and substrate specificity analysis. J. Neurochem. 48: 1851–1856.PubMedCrossRefGoogle Scholar
  9. 9).
    RHOADS, D. E., PETERSON, N. A., RAGHUPATHY, E. (1984). Iminoglycine transport system in synaptosomes and its interaction with enkephalins. Biochemistry 23: 117–121PubMedCrossRefGoogle Scholar
  10. 10).
    KANNER, B. I. (1978). Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17: 1207–1211PubMedCrossRefGoogle Scholar
  11. 11).
    ZAFRA, F., ARAGON, M. C., VALDIVIESO, F., GIMÉNEZ, C. (1984). (3-Alanine transport into plasma membrane vesicles derived from rat brain synaptosomes. Neurochem. Res. 9: 695–707.Google Scholar
  12. 12).
    ARAGON, M. C., GIMÉNEZ, C. (1986). Efflux and exchange of glycine by synaptic plasma membrane vesicles derived from rat brain. Biochim. Biophys. Acta 855: 257–264.PubMedCrossRefGoogle Scholar
  13. 13).
    SIDHU, H. S., WOOD, J. D. (1986). Three uptake systems in synaptosomes for nipe cotic acid and beta-alanine. Neuropharm. 25: 555–558.CrossRefGoogle Scholar
  14. 14).
    WILSON, D. F., PASTUSZKO, A. (1986). Transport of cysteate by synaptosomes iso lated from rat brain: Evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate. J. Neurochem. 47: 1091–1097.PubMedCrossRefGoogle Scholar
  15. 15).
    TALLAN, H. H., MOORE, S., STEIN, W. H. (1954). Studies of the free amino acids and related compounds in the tissues of the cat. J. Biol. Chem. 211: 927–939.PubMedGoogle Scholar
  16. 16).
    IVERSEN, L. L., BLOOM, F. E. (1972). Studies of the uptake of [3H]-GABA and [3H]-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41: 131–143.PubMedCrossRefGoogle Scholar
  17. 17).
    TURNER, A. J., WHITTLE, S. R. (1983). Biochemical dissection of the gamma-amino butyrate synapse. Biochem. J. 209: 29–41.PubMedGoogle Scholar
  18. 18).
    SNYDER, S. H., YOUNG, A. B., BENNETT, J. P., MULDER, A. H. (1973). Synaptic biochemistry of amino acids. Fed. Proc. 32: 2039–2047.PubMedGoogle Scholar
  19. 19).
    TROEGER, M. B., WILSON, D. F., ERECINSKA, M. (1984). The effect of thiol reagents on GABA transport in rat brain synaptosomes. FEBS Lett. 171: 303–308.PubMedCrossRefGoogle Scholar
  20. 20).
    WOOD, J. D., SIDHU, H. S. (1986). Uptake of gamma-aminobutyric acid by brain tissue preparations: A reevaluation. J. Neurochem. 46: 739–744.PubMedCrossRefGoogle Scholar
  21. 21).
    KANNER, B. I., RADIAN, R. (1985). Ion-coupled neurotransmitter transport across the synaptic plasma membrane. Ann. N.Y. Acad. Sci. 456: 153–161PubMedCrossRefGoogle Scholar
  22. 22).
    ASAKURA, T., HOSHINO, M., KOBAYASHI, T. (1982). Effect of calcium ion on the release of gammaaminobutyric acid from synaptosomal fraction. J. Biochem. 92: 1919–1923.PubMedGoogle Scholar
  23. 23).
    JONSSON, U., LUNDSTROM, M., SELLSTROM, A, EHINGER, B. (1986). Calcium-independent release of gamma-aminobutyrate from nerve processes in the developing rabbit retina. Neurosci. 17: 1235–1241CrossRefGoogle Scholar
  24. 24).
    MARTIN, D. L. (1976). Carrier-mediated transport and removal of GABA from synaptic regions. In: GABA in Nervous System Function ( Roberts, E., Chase, T. N., Tower, D. B., eds.), Raven Press, New York, pp. 347–386.Google Scholar
  25. 25).
    LEVI, G., BANAY-SCHWARTZ, M., RAITERI, M. (1978). Uptake, exchange and release of GABA in isolated nerve endings. In: Amino Acids as Chemical Transmitters ( Fonnum, F., ed.), Plenum Press, New York, pp. 327–350.Google Scholar
  26. 26).
    ARIAS, C., SITGES, M., TAPIA, R. (1984). Stimulation of [3Hjgamma-aminobutyric acid release by calcium chelators in synaptosomes. J. Neurochem. 42: 1507–1514.PubMedCrossRefGoogle Scholar
  27. 27).
    REDBURN, D. (1978). Relationship between synaptosomal uptake and release of [14C]GABA, [14C]diaminobutyric acid and [14C]3-alanine. J. Neurochem. 31: 939–945.PubMedCrossRefGoogle Scholar
  28. 28).
    COTMAN, C. W., HAYCOCK, J. W., WHITE, W. F. (1976). Stimulus-secretion coupling processes in brain: Analysis of noradrenaline and gamma-aminobutyric acid release. J. PhysioL 254: 475505.Google Scholar
  29. 29).
    NADLER, J. V., WHITE, W. F., VACA, K. W., REDBURN, D. A., COTMAN, C. W. (1977). Characterization of putative amino acid transmitter release from slices of rat dentate gyrus. J. Neurochem. 29: 279–290.PubMedCrossRefGoogle Scholar
  30. 30).
    SHANK, R. P., SCHNEIDER, C. R., TIGHE, J. J. (1987). Ion dependence of neurotransmitter uptake: Inhibitory effects of ion substitutes. J. Neurochem. 49: 381–388.PubMedCrossRefGoogle Scholar
  31. 31).
    RAITERI, M., FEDERICO, R., COLETTI, A., LEVI, G. (1975). Release and exchange studies relating to the synaptosomal uptake of GABA. J. Neurochem. 24: 1243–1250.PubMedCrossRefGoogle Scholar
  32. 32).
    O’FALLON, F. V., BROSEMER, R. W., HARDING, J. W. (1981). The Na’, K’-ATPase: A plausible trigger for voltage-independent release of cytoplasmic neuro-transmitters. J. Neurochem. 36: 369378.Google Scholar
  33. 33).
    NOTO, T, HASHIMOTO, H., NAKAO, J., KAMIMURA, H., NAKAJIMA, T. (1986). Spontaneous release of gamma-aminobutyric acid formed from putrescine and its enhanced Ca2’-dependent release by high K’ stimulation in the brains of freely moving rats. J. Neurochem. 46: 1877–1880.PubMedCrossRefGoogle Scholar
  34. 34).
    FONNUM, F. (1984). Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42: 1–11PubMedCrossRefGoogle Scholar
  35. 35).
    TAKAGAKI, G., KONAGAYA, H. (1985). Properties of the uptake and release of neurotransmitter glutamate in cerebral cortical tissue of guinea pigs. Neurochem. Res. 10: 1059–1069.PubMedCrossRefGoogle Scholar
  36. 36).
    SCHOUSBOE, A., DREJER, J., HERTZ, L. Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures. In: Glutamine and Glutamate in Mammals (Kvamme, E., ed.), CRC Press, Boca Raton, Florida, in press.Google Scholar
  37. 37).
    FERKANY, J., COYLE, J. T. (1986). Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J. NeuroscL Res. 16: 491–503.CrossRefGoogle Scholar
  38. 38).
    WARNER, S. J. C., CANTRILL, R. C., BRENNAN, M. J. W. (1981). Differential action of adenosine triphosphate on high affinity transport of L-glutamate and L-aspartate in rat brain synaptosomes. Life Sci. 28: 163–165.PubMedCrossRefGoogle Scholar
  39. 39).
    ARBUTHNOT, P. B., CANTRILL, R. C. (1985). Purine nucleoside and nucleotide regulation of high affinity [3H]glutamate and [3H]aspartate uptake into rat brain synaptosomes. Int J. Biochem. 17: 753–755.PubMedCrossRefGoogle Scholar
  40. 40).
    KANNER, B. I., RADIAN, R. (1986). Mechanisms of reuotake of neurntransmittarc from the svnantic cleft. In: Exitarory Amino Acids ( Roberts, P. J., Storm-Mathisen, J., Bradford, H. F., eds.), Macmillan Press, London, pp. 159–172.Google Scholar
  41. 41).
    KRAMER, K., BAUDRY, M. (1984). Low concentrations of potassium inhibit the Na-dependent [3Hjglutamate binding to rat hippocampal membranes. Eur. J. PharmacoL 102: 155–158.PubMedCrossRefGoogle Scholar
  42. 42).
    DANBOLT, N. C., STORM-MATHISEN, J. (1986). Inhibition by K’ of Na’-dependent D-aspartate uptake into brain membrane saccules. J. Neurochem. 47: 825–830.PubMedCrossRefGoogle Scholar
  43. 43).
    MENA, E. E., FAGG, G. E., COTMAN, C. W. (1982). Chloride ions enhance L-glutamate binding to rat brain synaptic membranes. Brain Res. 243: 378–381PubMedCrossRefGoogle Scholar
  44. 44).
    ZACZEK, R., ARLIS, S., MARKE, A., MURPHY, T., DRUCKER, H., COYLE, J. T. (1987). Characteristics of chloride-dependent incorporation of glutamate into brain membranes argue against a receptor binding site. NeuropharmacoL 26: 281–287.CrossRefGoogle Scholar
  45. 45).
    MANGAN, J. L, WHITTAKER, V. P. (1966). The distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98: 128–137.PubMedGoogle Scholar
  46. 46).
    DISBROW, J. K., GERSHTEN, M. J., RUTH, J. A. (1982). Uptake of L-[3H] glutamic acid by crude and purified synaptic vesicles from rat brain. Biochem. Biophys. Res. Commun. 108: 1221–1227.PubMedCrossRefGoogle Scholar
  47. 47).
    NAITO, S. UEDA, T. (1985). Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44: 99–109.PubMedCrossRefGoogle Scholar
  48. 48).
    STORM-MATHISEN, J., LEKNES, A. K., BORE, A. T., VAALAND, J. L., EDMINSON, P., HAUG, F. M. S., OTTERSEN, O. P. (1983). First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301: 517–520.CrossRefGoogle Scholar
  49. 49).
    VIRGILI, M., POLI, A., CONTESTABILE, A., MIGANI, P., BARNABEI, D. (1986). Synaptosomal release of newly-synthetized or recently accumulated amino acids. Differential effects of kainic acid on naturally occurring excitatory amino acids and on [D-3H]aspartate. Neurochem. Int 9: 29–33.PubMedCrossRefGoogle Scholar
  50. 50).
    MARCHBANKS, R. M. (1975). The chloride content, anion deficit and volume of synaptosomes. J. Neurochem. 25: 463–470.PubMedCrossRefGoogle Scholar
  51. 51).
    HARDY, J. A., BOAKES, R. J., THOMAS, D. J., E., KIDD, A. M., EDWARDSON, J. A., VIRMANI, M., TURNER, J., DODD, R. R. (1984). Release of aspartate and glutamate caused by chloride reduction in synaptosomal incubation media. J. Neurochem. 42: 875–877.Google Scholar
  52. 52).
    NICHOLLS, D. G., SIHRA, T. S. (1986). Synaptosomes possess an exocytotic pool of glutamate. Nature 321: 772–773.PubMedCrossRefGoogle Scholar
  53. 53).
    FEASEY, K. J., LYNCH, M. A., BLISS, T. V. R. (1986). Long-term potentiation is associated with an increase in calcium-dependent potassium release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat. Brain Res. 364: 39–44.PubMedCrossRefGoogle Scholar
  54. 54).
    LYNCH, M. A., BLISS, T. V. P. (1986). Long-term potentiation of synaptic transmission in the hippo-campus of the rat; Effect of calmodulin and oleoyl-acetyl-glycerol on release of [3H]glutamate. Neurosci Lett. 65: 171–176.PubMedCrossRefGoogle Scholar
  55. 55).
    HU, G. Y., HVALBY, O., WALAAS, S. I., ALBERT, K. A., SKJEFLO, P., ANDERSEN, P., GREENGARD, R. (1987). Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328: 426–429.PubMedCrossRefGoogle Scholar
  56. 56).
    PERRY, T. L. Glutamine, glutamate and GABA in human diseases. In: Glutamine and Glutamate in Mammals (Kvamme, E., ed.), CRC Press, Boca Raton, Florida, in press.Google Scholar
  57. 57).
    KVAMME, E. (1983). Glutamine. In: Handbook of Neurochemistry (Lajtha, A., ed.), Vol. 3, 2nd ed., Plenum Press, New York, pp. 405–422.Google Scholar
  58. 58).
    MINN, A., BESAGNI, D. (1983). Uptake of L-glutamine into synaptosomes. Is the gamma-glutamyl cycle involved? Life Sci. 33: 225–232.PubMedCrossRefGoogle Scholar
  59. 59).
    KVAMME, E., SCHOUSBOE, A., HERTZ, L, TORGNER, I. A., SVENNEBY, G. (1985). Developmental change of endogenous glutamate and gamma-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem. Res. 10: 993–1008.PubMedCrossRefGoogle Scholar
  60. 60).
    JOHANSEN, L, ROBERG, B., KVAMME, E. (1987). Uptake and release for glutamine and glutamate in a crude synaptosomal fraction from rat brain. Neurochem. Res. 12: 135–140.PubMedCrossRefGoogle Scholar
  61. 61).
    KVAMME, E., LENDA, K. (1981). Evidence for compartmentalization of glutamate in rat brain synaptosomes using the glutamate sensitivity of phosphate-activated glutaminase as a functional test. Neurosci. Lett 25: 193–198.PubMedCrossRefGoogle Scholar
  62. 62).
    BRADFORD, H. J., WARD, H. K., THOMAS, A. J. (1978). Glutamine–a major substrate for nerve endings. J. Neurochem. 30: 1453–1459.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Elling Kvamme
    • 1
  • Bjørg Roberg
    • 1
  • Liv Johansen
    • 1
  1. 1.Neurochemical LaboratoryUniversity of OsloOslo 3Norway

Personalised recommendations