Skip to main content

Fine Structural Correlates of Calcium Dynamics in the Presynaptic Terminal

  • Conference paper
Book cover Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Abstract

Correlative morphological changes brought about by synaptic function have proven to be illusive. We have been interested in the fine structural correlates of synaptic fatigue in the frog sartorius neuromuscular preparation brought about by tetanic stimulation of the sartorius nerve with a suction electrode (Rose, et al., 1978). It has been suggested that the decrement of presynaptic transmitter release may be due to the decrement in the synaptic vesicle population, as the vesicular release of ACh at the neuromuscular junction exceeds the replacement of the vesicles when the presynaptic nerve stimulation is greatly augmented (Heuser and Reese, 1973). Examination with the electron microscope of the same presynaptic nerve terminal from which postsynaptic endplate potentials were recorded does not support the vesicle depletion theory. Extensive studies on identified synapses in the frog sartorius neuromuscular preparation indicated that there was no correlation with the decrease of the end-plate potential following stimulation and the number of vesicles present in the presynaptic ending (Rose, et al., 1978). It has also been reported that the steady decrease in the amount of transmitter being released during tetanic stimulation does not deplete the amount of ACh present in the presynaptic ending (Kriebel, et al., 1976). One can reasonably conclude that if the synaptic vesicle population or the presynaptic stores of ACh are not critically affected, then some other factor such as the obligatory role that calcium ions play in depolarization secretion-coupling may be critically affected and may bring about synaptic fatigue (cf. Augustine et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Takeda K and Umbach JA (1985) Inhibitors of calcium buffering depresses evoked transmitter release at the squid giant synapse. J Physiol 369: 145–159

    PubMed  Google Scholar 

  • Augustine GJ, Charlton MP and Smith SJ (1987) Calcium action in synaptic transmitter release. Ann Rev Neurosci 10: 633–693

    Article  PubMed  CAS  Google Scholar 

  • Baker PF and Di Polo R (1984) Axonal calcium and magnesium homeostasis. Kleinzeller A and Baker PF (eds) Academic Press 1984 New York: 195–242 In: Current Topics in Mem-branes and Transport

    Google Scholar 

  • Becker RP, Canada J and Pappas GD (1982) Calcium localization at the neuromuscular junction: X-ray microanalysis of resinless sections. J Cell Biol 95: 101a

    Google Scholar 

  • Borgers M, de Brabander M, van Reempts J, Awouters F and Jacob WA (1977) Intranuclear microtubules in lung mast cells of guinea pigs in anaphyulactic shock. Lab Invest 37: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Borgers M, Thone F and van Nueten JM (1981) The subcellular distribution of calcium and the effects of calcium- antagonists as evaluated with a combined oxalate- pyroantimonate technique. Acta histochem Suppl Band XXIV S 327–332

    Google Scholar 

  • De Lorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41: 2265: 2272

    Google Scholar 

  • Di Polo R and Beauge L (1983) The calcium pump and sodium- calcium exchange in squid axons. Ann Rev Physiol 45: 313–324

    Article  Google Scholar 

  • Heuser JE and Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57: 315–344

    Article  PubMed  CAS  Google Scholar 

  • Katz B and Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195: 481–492

    PubMed  CAS  Google Scholar 

  • Kiene M-L and Stadler H (1987) Synaptic vesicles in electromotoneurones. I. Axonal transport, site of transmitter uptake and processing of a core proteoglycan during maturation. The EMBO Jour 6: 2209–2215

    CAS  Google Scholar 

  • Klee CB, Crouch TH and Richman PG (1980) Calmodulin. Ann Rev Biochem 49: 489–515

    Article  PubMed  CAS  Google Scholar 

  • Kriebel ME, Hanna RB and Pappas GD (1980) Spontaneous potentials and fine structure of identified frog denervated neuromuscular junctions. Neurosci 5: 97–108

    Article  CAS  Google Scholar 

  • Kriebel ME, Matteson DR and Pappas GD (1978) Acetylcholine content in physiologically fatigued frog nerve-muscle preparations and in denervated muscle. Gen Pharmacol 9: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Kurzinger K, Stadtkus C, Humprecht B (1980) Uptake and energy-dependent extrusion of calcium in neural cells in culture. Eur J Biochem 103: 597–611

    Article  PubMed  CAS  Google Scholar 

  • Kusano K (1970) Influence of ionic environment on the relationship between pre- and postsynaptic potentials. J Neurobiol 1: 435–457

    Article  PubMed  CAS  Google Scholar 

  • Llinas R and Nicholson C (1975) Calcium role in depolarization-secretion coupling: An aequorin study in squid giant synapse. PNAS 72: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Oschman JL and Wall BJ (1972) Calcium binding to intestinal membranes J Cell Biol 55: 58–73

    Article  CAS  Google Scholar 

  • Papazian DM, Rahamimoff H and Goldin SM (1984) Partial purification and functional identification of a calmodulin-activated, adenosine 5’-triphosphate-dependent calcium pump from synaptic plasma membranes. J Neurosci 4: 1933–1943

    PubMed  CAS  Google Scholar 

  • Pappas GD and Rose S (1976) Localization of calcium deposits in the frog neuromuscular junction at rest and following stimulation. Brain Res 103: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Pappas GD, Rose S and Kriebel ME (1975) Dynamic aspects of the calcium binding sites in synaptic vesicles in the frog neuromuscular junction. In: Yamada E (ed). Proc 10th Int Congr Anat Science Council of Japan: p 15

    Google Scholar 

  • Parhad IM and Griffin JW (1983) Segmental demyelination after subperineurial injection of doxorubicin. J Neuropath Exp Neurol 43: 317

    Article  Google Scholar 

  • Politoff AL, Rose S and Pappas GD (1974) The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J Cell Biol 61: 818–823

    Article  PubMed  CAS  Google Scholar 

  • Ripps H, Shakib M, Chappell RL and MacDonald ED (1979) Ultrastructural localization and X-ray analysis of calcium-induced electron-dense deposits in the skate retina. Neurosci 4: 1689–1703

    Article  CAS  Google Scholar 

  • Robinson JM and Karnovsky MJ (198 3) Ultrastructural localization of several phosphatases with cerium. J Histo Cyto 31:1197–1208

    Google Scholar 

  • Rose S, Pappas GD, Kriebel M and Tousimis AJ (1974) Evidence for the synaptic vesicle calcium binding site at the neuromuscular junction of the frog sartorius. Biol Bull 147: 495–496

    Google Scholar 

  • Rose SJ, Pappas GD and Kriebel ME (1978) The fine structure of identified frog neuromuscular junctions in relation to synaptic activity. Brain Res 144: 213–239

    Article  PubMed  CAS  Google Scholar 

  • Salama AH, Zaki AE-ME and Eisenmann DR (1987) Cytochemical localization of Ca2+-Mg2+ adenosine triphosphatase in rat incisor ameloblasts during enamel secretion and maturation. J Histo Cyto 35: 471–482

    Article  CAS  Google Scholar 

  • Stadler H and Kiene M-L (1987) Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties; exocytosis and insertion of a core proteoglycan into the extracellular matrix. The EMBO Jour 6: 2217–2221

    CAS  Google Scholar 

  • Van Belle H (1981) R24571: A potent inhibitor of calmodulin activated enzymes. Cell Calcium 2: 483–494

    Article  Google Scholar 

  • Wachstein M and Meisel E (1957) Histochemistry of hepatic phosphatase at a physiological pH. Am J Clin Pathol 27: 13–23

    PubMed  CAS  Google Scholar 

  • Zimmerman U-JP and Schlaepfer WW (1982) Characterization of a brain calcium activated protease that degrades neurofilament proteins. Biochem 21: 3977–3983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pappas, G.D., Kriho, V., Becker, R.P. (1988). Fine Structural Correlates of Calcium Dynamics in the Presynaptic Terminal. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics