Advertisement

Brain α-Neurotoxin-Binding Proteins and Nicotinic Acetylcholine Receptors

  • Mark G. Darlison
  • Andrew A. Hicks
  • Victor B. Cockcroft
  • Michael D. Squire
  • Eric A. Barnard
Conference paper
Part of the NATO ASI Series book series (volume 21)

Abstract

The study of the nicotinic acetylcholine receptor (AChR) of skeletal muscle and fish electric organ has been greatly facilitated by the application of the α-neurotoxins (postsynaptic toxins) of elapid and hydrophid snake venoms, such as α-bungarotoxin (α-BTX), introduced by C. Y. Lee (Lee, 1973). These polypeptide toxins bind to the receptor with KD values 10−9 and 10−12 M, causing blockade of function. It has been found that the peripheral (vertebrate muscle and electric organ) type of AChR invariably has two of these high-affinity α-toxin binding sites, one on each of the α subunits of its α2βγδ pentameric structure (for reviews see Dolly and Barnard, 1984; Popot and Changeux, 1984) . However, attempts to use α-bungarotoxin as a probe for the more poorly-characterised, neuronal nicotinic receptors have caused a great deal of confusion.

Keywords

Nicotinic Acetylcholine Receptor Optic Tectum Electric Organ Chick Brain Subunit Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, E. A., Beeson, D. M. W., Cockcroft, V. B., Darlison, M. G., Hicks, A. A., Lai, F. A., Moss, S. J. and Squire, M. D. (1986) in Nicotinic Acetylcholine Receptor: Structure and Function (Maelicke, A. ed.), NATO ASI Series H, Vol. 3, pp 389–415, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  2. Bonner, T. I., Buckley, N. J., Young, A. C. and Brann, M. R. (1987) Science 237, 527–532.PubMedCrossRefGoogle Scholar
  3. Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S. and Patrick, J. (1986) Nature 319, 368–374.PubMedCrossRefGoogle Scholar
  4. Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. (1987) Proc. Natl Acad. Sci. USA. 84, 7763–7767.PubMedCrossRefGoogle Scholar
  5. Chiappinelli, V. A. (1983) Brain Res. 277, 9–22.PubMedCrossRefGoogle Scholar
  6. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B. and Pert, A. (1985) J. Neurosci. 5, 1307–1315.PubMedGoogle Scholar
  7. Conti-Tronconi, B. M., Dunn, S. M. J., Barnard, E. A., Dolly, J. O., Lai, F. A., Ray, N. and Raftery, M. A. (1985) Proc. Natl Acad. Sci. USA. 82, 5208–5212PubMedCrossRefGoogle Scholar
  8. Dolly, J. O. and Barnard, E. A. (1984) Biochem. Pharmacol. 33, 841–858.PubMedCrossRefGoogle Scholar
  9. Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J. and Heinemann, S. (1987) Cell 48, 965–973.PubMedCrossRefGoogle Scholar
  10. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) Nucleic Acids Res. 9, r43–r74.PubMedCrossRefGoogle Scholar
  11. Guy, H. R. and Hucho, F. (1987) Trends Neurosci. 10, 318–321.CrossRefGoogle Scholar
  12. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V. and Hulme, E. C. (1980) Nature 283, 90–92.PubMedCrossRefGoogle Scholar
  13. Jacob, M. H., Berg, D. K. and Lindstrom, J. M. (1984) Proc. Natl Acad. Sci. USA. 81, 3223–3227.PubMedCrossRefGoogle Scholar
  14. Jacob, M. H., Lindstrom, J. M. and Berg, D. K. (1986) J. Cell Biol. 103, 205–214.PubMedCrossRefGoogle Scholar
  15. Kurosaki, T., Fukuda, K., Konno, T., Mori, Y., Tanaka, K., Mishina, M. and Numa, S. (1987) FEBS Letts 214, 253–258.CrossRefGoogle Scholar
  16. Kyte, J. and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105–132.PubMedCrossRefGoogle Scholar
  17. Larsson, C. and Nordberg, A. (1985) J. Neurochem. 45, 24–31.PubMedCrossRefGoogle Scholar
  18. Lee, C. Y. (1973) in Proc. 5th Int. Congr. Pharmacol, pp 210–232, Karger, Basel.Google Scholar
  19. Loring, R. H., Chiappinelli, V. A., Zigmond, R. E. and Cohen, J. B. (1984) Neuroscience 11, 989 - 999.PubMedCrossRefGoogle Scholar
  20. Loring, R. H. and Zigmond, R. E. (1987) J. Neurosci. 7, 2153–2162.PubMedGoogle Scholar
  21. Margiotta, J. F., Berg, D. K. and Dionne, V. E. (1987) Proc. Natl Acad. Sci. USA. 84, 8155–8159.PubMedCrossRefGoogle Scholar
  22. Marks, M. J. and Collins, A. C. (1982) Mol. Pharmacol. 22, 554–564.PubMedGoogle Scholar
  23. Martino-Barrows, A. M. and Kellar, K. J. (1987) Mol. Pharmacol 31, 169–174.PubMedGoogle Scholar
  24. Nef, P., Mauron, A., Stalder, R., Alliod, C. and Ballivet, M. (1984) Proc. Natl Acad. Sci. USA. 81, 7975–7979.PubMedCrossRefGoogle Scholar
  25. Nef, P., Oneyser, C., Barkas, T. and Ballivet, M. (1986) in Nicotinic Acetylcholine Receptor: Structure and Function (Maelicke, A. ed.), NATO ASI Series H, Vol. 3, pp 417–422 Springer-Verlag, Berlin.Google Scholar
  26. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982) Nature 299, 793–797.PubMedCrossRefGoogle Scholar
  27. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S. (1983) Nature 305, 818–823.PubMedCrossRefGoogle Scholar
  28. Norman, R. I., Mehraban, F., Barnard, E. A. and Dolly, J. O. (1982) Proc. Natl Acad. Sci. USA. 79, 1321–1325.PubMedCrossRefGoogle Scholar
  29. Oswald, R. E. and Freeman, J. A. (1981) Neuroscience 6, 1–14.PubMedCrossRefGoogle Scholar
  30. Popot, J.-L. and Changeux, J.-P. (1984) Physiol. Rev. 64, 1162–1239.PubMedGoogle Scholar
  31. Ravdin, P. M. and Berg, D. K. (1979) Proc. Natl Acad. Sci. USA. 76, 2072–2076.PubMedCrossRefGoogle Scholar
  32. Schneider, M., Adee, C., Betz, H. and Schmidt, J. (1985) J.Biol. Chem. 260, 14505–14512.Google Scholar
  33. Shibahara, S., Kubo, T., Perski, H. J., Takahashi, H., Noda, M and Numa, S. (1985) Eur. J. Biochem. 146, 15–22.Google Scholar
  34. Smith, M. A., Stollberg, J., Lindstrom, J. M. and Berg, D. K. (1985) J. Neurosci. 5, 2726–2731.PubMedGoogle Scholar
  35. Stollberg, J. and Berg, D. K. (1987) J. Neurosci. 7, 1809–1815PubMedGoogle Scholar
  36. Swanson, L. W., Lindstrom, J., Tzartos, S., Schmued, L. C., O’Leary, D. D. M. and Cowan, W. M. (1983) Proc. Natl Acad Sci. USA. 80, 4532–4536.PubMedCrossRefGoogle Scholar
  37. Swanson, L. W., Simmons, D. M., Whiting, P. J. and Lindstrom, J. (1987) J. Neurosci. 7, 3334–3342.PubMedGoogle Scholar
  38. Taylor, S. S. (1987) BioEssays 7, 24–29.PubMedCrossRefGoogle Scholar
  39. Wang, G.-K., Molinaro, S. and Schmidt, J. (1978) J. Biol. Chem 253, 8507–8512.PubMedGoogle Scholar
  40. Whiting, P. J. and Lindstrom, J. M. (1986a) Biochemistry 25, 2082–2093.PubMedCrossRefGoogle Scholar
  41. Whiting, P. and Lindstrom, J. (1986b) J. Neurosci. 6, 3061–3069.PubMedGoogle Scholar
  42. Whiting, P. J. and Lindstrom, J. (1987a) Proc. Natl Acad. Sci USA. 84, 595–599.PubMedCrossRefGoogle Scholar
  43. Whiting, P. and Lindstrom, J. (1987b) FEBS Letts 213, 55–60.CrossRefGoogle Scholar
  44. Whiting, P., Esch, F., Shimasaki, S. and Lindstrom, J. (1987a) FEBS Letts 219, 459–463.Google Scholar
  45. Whiting, P. J., Schoepfer, R., Swanson, L. W., Simmons, D.M. and Lindstrom, J. M. (1987b) Nature 327, 515–518.PubMedCrossRefGoogle Scholar
  46. Wonnacott, S. (1986) J. Neurochem. 47, 1706–1712.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Mark G. Darlison
    • 1
  • Andrew A. Hicks
    • 1
  • Victor B. Cockcroft
    • 1
  • Michael D. Squire
    • 1
  • Eric A. Barnard
    • 1
  1. 1.MRC Molecular Neurobiology UnitMRC CentreCambridgeUnited Kingdom

Personalised recommendations