Complexity and Regulation in the Acetylcholine Storage System of Synaptic Vesicles

  • Stanley M. Parsons
  • Krystyna Noremberg
  • Gary A. Rogers
  • Lawrence M. Gracz
  • Wayne D. Kornreich
  • Ben A. Bahr
  • Rose Kaufman
Conference paper
Part of the NATO ASI Series book series (volume 21)

Abstract

Synaptic vesicles isolated from the electric organ of Torpedo exhibit active transport of acetylcholine (AcCh). The transport system is composed of at least three components; namely, an ATPase thought to pump protons into the vesicle, an AcCh transporter which draws on the proton-motive-force to drive secondary active transport of AcCh, and a receptor for the drug 1-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly known as AH5183) (Bahr and Parsons, 1986a). When the vesamicol receptor is occupied, AcCh active transport is blocked noncompetitively with no effect on the ATPase activity (Anderson et al., 1983; Bahr and Parsons, 1986b).

Keywords

Sucrose Filtration Titration Glycine Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DC, Bahr BA, Parsons SM (1986) Stoichiometries of acetylcholine uptake, release and drug inhibition in Torpedo synaptic vesicles:Heterogeneity in acetylcholine transport and storage. J Neurochem 46: 1207–1213PubMedCrossRefGoogle Scholar
  2. Anderson DC, King SC, Parsons SM (1982) Proton gradient linkage to active uptake of L3H]acetylcholine by Torpedo electric organ synaptic vesicles. Biochemistry 21: 3037–3043PubMedCrossRefGoogle Scholar
  3. Anderson DC, King SC, Parsons SM (1983) Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Molec Pharmacol 24: 48–54Google Scholar
  4. Bahr BA, Parsons SM (1986a) Demonstration of a receptor in Torpedo synaptic vesicles for acetylcholine storage blocker l-trans–2-(4-phenyl[3,4-3H]piperidino) cyclohexanol. Proc Nat Acad Sci USA 83: 2267–2270PubMedCrossRefGoogle Scholar
  5. Bahr BA, Parsons SM (1986b) Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. J Neurochem 46: 1214–1218PubMedCrossRefGoogle Scholar
  6. Buckley D, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100: 1284–1294PubMedCrossRefGoogle Scholar
  7. Edwards C, Dolezal V, Tucek S, Zemkova H, Vyskocil, F (1985) Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction? Proc Natl Acad Sci USA 82: 3514–3518PubMedCrossRefGoogle Scholar
  8. Jahn R, Schiebler W, Greengard P (1984) A quantitative dot-immunobinding assay for proteins using nitrocellulose membrane filters. Proc Natl Acad Sci USA 81: 1684–1687PubMedCrossRefGoogle Scholar
  9. Marien MR, Parsons SM, Altar CA (1987) Quantitative autoradiography of brain binding sites for the vesicular acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183). Pro Acad Sci USA 84: 876–880CrossRefGoogle Scholar
  10. Marshall IG (1970) Studies on the blocking action of 2-(4-phenylpiperidino) cyclohexanol (AH5183). Br J Pharmac 38: 503–516Google Scholar
  11. Marshall IG, Parsons SM (1987) The vesicular acetylcholine transport system and its pharmacology. Trends in Neurosci 10: 174–177CrossRefGoogle Scholar
  12. Zimmermann H, Denston DR (1977) Recycling of synaptic vesicles in the cholinergic synapses of he Torpedo electric organ during induced transmitter release. Neuroscience 2: 695–714CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Stanley M. Parsons
    • 1
  • Krystyna Noremberg
    • 1
  • Gary A. Rogers
    • 1
  • Lawrence M. Gracz
    • 1
  • Wayne D. Kornreich
    • 1
  • Ben A. Bahr
    • 1
  • Rose Kaufman
    • 1
  1. 1.Department of Chemistry and the Neurosciences Research Program Institute of Environmental StressUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations