Skip to main content

Pathogenesis in Vascular Diseases of Plants

  • Conference paper
Vascular Wilt Diseases of Plants

Part of the book series: NATO ASI Series ((ASIH,volume 28))

Abstract

Prokaryote and eukaryote vascular pathogens represent a wide but unique range of micro-organisms which exist in the host xylem during the pathogenic phase of the life cycle and from there induce symptoms of wilt and /or necrosis. The major fungal and bacterial species involved are shown in Table 1. The term ‘vascular pathogen’ has tended to be used synonymously with wilt pathogen. Where wilt symptoms represent a transitory phase of the disease however, and foliar necrosis is dominant, the list of organisms can be extended greatly to include species such as Xanthomonas campestris on Brassica olearacea, Erwinia amylovora on Pyrus and other hosts, and Stereum purpureum on Prunus. Several pathogens; Fusariurn formae, Ophiostoma ceratocystis, Clavibacter michiganensis subsp. insidiosus and Erwinia stewartii exhibit specificity in their natural hast range. Verticillium dahliae, V. albo-atrum and Pseudomonas solanacearum by contrast infect over 300 hast plants including many of the main field and plantation crops in temperate and tropical countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in Plant Biology. Academic Press, New York

    Google Scholar 

  • Abeles FB and Forrence LE (1970) Temporal and hormonal control of ß-1,3-glucanase in Phaseolus vulgaris. Plant Physiology 45:395–400

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P (1975) The walls of growing plant cells. Scient Amer 232:81–95

    Article  Google Scholar 

  • Albersheim P and Anderson AJ (1971) Host-pathogen Interactions III. Proteins from plant cell walls inhibit enzymes secreted by plant pathogens. Proc Nat Acad Sci USA 68:1815–1819

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P, Neukom H and Deuel H (1960) Über die bildung con ungesättigten abbauprodukten durch ein pektinabbauendes Enzym. Helvt Chim Acta 43:1422–1426

    Article  CAS  Google Scholar 

  • Asamov DK, Tursunkulova RK, Isaev PI, Ostroshchenko OS and Stepanichenko NN (1975) The action of phytotoxic substances of the fungus Verticilliurn dahliae on the permeability of a synthetic phospholipid membrane. Khim Pir Soedin 5:670 (Russian) Chem Nat compds 11:713–714 Transl (1976)

    Google Scholar 

  • Austin S (1979) Interaction of ethylene with Verticillium albo-atrum culture metabolites and with ions in symptom expression in tomato. PhD thesis Univ London

    Google Scholar 

  • Ayres AR, Ayres SB and Goodman RN (1979) Extracellular polysaccharide of Erwinia amylovora: a correlation with virulence. Appl Environ Microbiol 38:659–666

    Google Scholar 

  • Ballio A, Chain EB, DeLeo P, Erlanger BF, Kauri M and Tonolo A (1964) Fusicoccin; a new wilting toxin produced by Fusicoccum amygdali. Nature 203:297

    Article  CAS  Google Scholar 

  • Ballio A, D’Alessio V, Randazzo G, Bottalico A, Graniti A, Sparapano L, Bosnar B, Casinovi CG and Gribanovski-Sassu O (1976) Occurrence of fusiccocin in plant tissues infected by Fusicoccum amygdali Del. Physiol Plant Path 8:163–169

    Article  CAS  Google Scholar 

  • Banfield WM (1941) Distribution by the sap stream of spores of three fungi that induce vascular wilt diseases of elm. J Agric Res 62:637–681

    Google Scholar 

  • Bateman DF (1967) Alteration of cell wall components during pathogenesis by Rhizoctonia solani. In: Mirocha CJ and Uritani I (eds) The Dynamic Role of Molecular Constituents in Plant-Parasite Interaction. APS, St Paul Minnesota

    Google Scholar 

  • Beckman CH (1969) The mechanics of gel formation by swelling of simulated plant cell wall membranes and perforration plates of banana root vessels. Phytopathology 59:837–843

    Google Scholar 

  • Beckman CH (1987) The Nature of Wilt Diseases of Plants. Am Phyt Soc Press, St Paul Minnesota

    Google Scholar 

  • Beckman CH and Halmos S (1962) Relation of vascular occluding reactions in banana roots to pathogenicity of root-invading fungi. Phytopathology 52:893–897

    Google Scholar 

  • Beckman CH, Kuntz JE, Riker AJ and Berbee JG (1953) Host responses associated with the development of oak wilt. Phytopathology 43:448–454

    Google Scholar 

  • Beckman CH, Mueller WC and Mace ME (1974) The stabilisation of artificial and natural cell wall membranes by phenolic infusion and its relation to wilt disease resistance. Phytopathology 64:1214–1220

    Article  CAS  Google Scholar 

  • Beckman CH and Talboys PW (1981) Anatomy of resistance. In: Mace ME, Bell AA and Beckman CH (eds) Fungal Wilt Diseases of Plants. Acad Press, New York London Toronto Sydney, 487–518

    Google Scholar 

  • Bell AA and Howell CR (1976) Report ot the disease and pathogen physiology. In: Bell AA (ed) Proc Beltwide Cotton Prod Res Conf

    Google Scholar 

  • Bell AA and Mace ME (1981) Biochemistry and Physiology of resistance. In: Mace ME, Bell AA and Beckman CH (eds) Fungal Wilt Diseases of Plants. Acad Press, New York London Toronto Sydney, 431–477

    Google Scholar 

  • Besford RT and Hobson GE (1972) Pectic enzymes associated with the softening of tomato fruit. Phytochem 11:2201–2205

    Article  CAS  Google Scholar 

  • Blackhurst FH (1963) Induction of Verticillium wilt disease symptoms in detached shoots of resistant and susceptible tomato plants. Ann Appl Biol 52:79–88

    Article  Google Scholar 

  • Blackhurst FH and Wood RKS (1963) Resistance of tomato plants to Verticillium albo-atrum fungal lysis. Trans Brit Mycol Soc 46:385–392

    Article  Google Scholar 

  • Bonn WG, Sequeira L and Upper CD (1975) Technique for the determination of the rate fo ethylene production by Pseudomonas solanacearum. Plant Physiology 56:688–691

    Article  PubMed  CAS  Google Scholar 

  • Booth JA (1969) Gossypium hirsutum tolerance to Verticillium albo-atrum infection. X, Amino acid exudation from aseptic roots of tolerant and susceptible cotton. Phytopathology 59:43–46

    CAS  Google Scholar 

  • Bradshaw-Rouse JJ, Whatley MH, Coplin DL, Woods A, Sequeira L and Kelman A (1981) Agglutination of Erwinia stewartii strains with a corn agglutin: correlation with extracellular polysaccharide production and pathogenicity. Appl Environ Microbiol 42(2):344–350

    PubMed  CAS  Google Scholar 

  • Braithwaite CWD and Dickey RS (1971) Permeability alterations in detached carnation leaf tissue inoculated with Pseudomonas caryophylli and Corynebacterium sp. Phytopathology 61:317–321

    Article  Google Scholar 

  • Briel W van den (1967) The occurrence of acid hydrolysable phenolics in relation to Fusarium wilt disease of tomate plants. Neth J Plant Path 73:126–128

    Article  Google Scholar 

  • Buchner V, Nachmias A and Burnstein Y (1982) Isolation and partial characterization of a phytotoxic glycopeptide from a protein-lipopolysaccharide complex produced by a potato isolate of Verticillium dahliae. Fed Euro Biochem Socs Letters 138:261–264

    Article  CAS  Google Scholar 

  • Carder JH, Hignett RC and Swinburne TR (1987) Relationship between the virulence of hop isolates Verticillium albo-atrum and their in vitro secretion of cell wall degrading enzymes. Physiol Mol Plant Path 31:441–453

    Article  CAS  Google Scholar 

  • Caroselli NE (1955) Investigations of toxins produced in vitro by the maple wilt fungus Verticillium sp. Phytopathology 45:183 (Abstr)

    Google Scholar 

  • Chi CC and Hanson EW (1964) Mechanism of wilting by Fusarium in red clover. Phytopathology 54:646–653

    Google Scholar 

  • Clarke AE and Stone BA (1962) ß-1,3-Glueanhydrolases from the grape vine (Vitis vinifera) and other plants. Phytochem 1: 175–188

    Article  CAS  Google Scholar 

  • Cleland RE and Rayle DL (1977) Revaluation of the effect of calcium ions or auxin-induced elongation. Plant Physiology 60: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Riov J, Lisker N and Katan J (1986) Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathology 76:1281–1285

    Article  CAS  Google Scholar 

  • Collmer A (1986) The molecular biology of pectic enzyme production and bacterial soft rot pathogenesis. In: Bailey JA (ed) Biology of Plant Pathogen Interactions, Plenum Press New York

    Google Scholar 

  • Collmer A, Schoedel C, Roeder DL, Ried JL and Rissler JF (1986) Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J Bact 161: 913–920

    Google Scholar 

  • Coplin D, Sequeira L and Hanson RS (1974) Pseudomonas solanacearum: virulence of biochemical mutants. Canad J Microbiol 20:519–529

    Article  CAS  Google Scholar 

  • Corden ME (1965) Influence of calcium nutrition on Fusarium wilt of tomato and polygalacturonase activity. Phytopathology 55:222–224

    Google Scholar 

  • Cooper RM (1984) The role of cell wall degrading enzymes in infection and damage. In: Plant Diseases Infection Damage and Loss. Wood RKS and Jellis JG (eds) Blackwell Scientific, Oxford, 13–27

    Google Scholar 

  • Cooper RM and Wood RKS (1973) Induction of synthesis of extracellular cell-wall degrading enzymes in vascular wilt fungi. Nature 246:309–311

    Article  CAS  Google Scholar 

  • Cooper RM and Wood RKS (1975) Regulation of synthesis of cell wall degrading enzymes by Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiol Plant Path 5:135–156

    Article  CAS  Google Scholar 

  • Cooper RM and Wood RKS (1980) Cell wall degrading enzymes of vascular wilt fungi. III Possible involvement of endopectin lyase in Verticillium wilt of tomato. Physiol Plant Path 16:285–300

    Article  CAS  Google Scholar 

  • Cronshaw DK and Pegg GF (1976) Ethylene as a toxin synergist in Verticillium wilt of tomato. Physiol Plant Path 9:33–44

    Article  CAS  Google Scholar 

  • Davis D (1969) Fusaric acid in selective pathogenicity of Fusarium oxysporum. Phytopathology 59:1391–1395

    PubMed  CAS  Google Scholar 

  • Davis D and Dimond AE (1954) The source and role of phenols in Fusarium wilt symptoms. Phytopathology 44:485–486

    Google Scholar 

  • Davis D, Waggoner PE and Dimond AE (1953) Conjugated phenols in the Fusarium wilt syndrome. Nature 172:959

    Article  CAS  Google Scholar 

  • Deese DC and Stahmann MA (1962a) Formation of pectic enzymes by Verticillium albo-atrum on susceptible and resistant tomato stem tissues and on wheat bran. Phytopath Z 46:53–70

    Article  CAS  Google Scholar 

  • Deese DC and Stahmann MA (1962b) Pectic enzymes in Fusarium-infected susceptible and resistant tomato plants. Phytopathology 52:255–261

    CAS  Google Scholar 

  • Deverall BJ and Wood RKS (1961) Chocolate spot of beans (Vicia faba L.)-interactions between phenolase of host and pectic enzymes of the pathogen. Ann Appl Biol 49:473–487

    Article  CAS  Google Scholar 

  • Dimond AE (1970) Biophysics and biochemistry of the vascular wilt syndrome. Ann Rev Phytopath 8:301–322

    Article  Google Scholar 

  • Dimond AE and Waggoner PE (1953) The cause of epinastic symptoms in Fusarium wilt of tomatoes. Phytopathology 43:663–669

    CAS  Google Scholar 

  • Dixon GR and Pegg GF (1969) Hyphal lysis and tylose formation in tomato cultivars infected by Verticillium albo-atrum. Trans Brit Mycol Soc 53:109–118

    Article  Google Scholar 

  • Dixon GR and Pegg GF (1972) Changes in amino-acid content of tomato xylem sap following infection with strains of Verticillium albo-atrum. Ann Bot 36:147–154

    CAS  Google Scholar 

  • Durrands PK and Cooper RM (1988a) Selection and characterisation of pectinase-deficient mutants of the vascular wilt pathogen Verticillium albo-atrum. Physiol Mol Plant Path 32:343–362

    Article  CAS  Google Scholar 

  • Durrands PK and Cooper RM (1988b) The role of pectinases in vascular wilt diseases as determined by deficient mutants of Verticillium albo-atrum. Physiol Mol Plant Path 32:363–371

    Article  Google Scholar 

  • Duvick JP and Sequeira L (1984) Interaction of Pseudomonas solanacearum with suspension-cultured tobacco cells and tobacco leaf cell walls in vitro. Appl Environ Microbiol (48) 1:199–205

    Google Scholar 

  • Edgington LV and Walker JC (1958) Influence of calcium and boron nutrition on development of Fusarium wilt of tomato. phytopathology 48:324–326

    Google Scholar 

  • Elgersma DA (1969) Resistance mechanisms of elms to Ceratocystis ulmi. Med van den Phytopath dienst, Lab Willie Commelin Scholten 77:1–84

    Google Scholar 

  • Fergus CL and Wharton DC (1957) Production of pectinase and growth-promoting substance by Ceratocystis fagacearum. Phytopathology 11:635–636

    Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues anti secretions. Proc Roy Soc (B) 93:306–317

    Article  CAS  Google Scholar 

  • Freebairn HT and Buddenhagen IW (1964) Ethylene production by Pseudomonas solanacearum. Nature 202:313–314

    Article  PubMed  CAS  Google Scholar 

  • Gagnon C (1967) Histochemical studies on the alteration of lignin and pectic substances in white elm infected by Ceratocystis ulmi. Can J Bot 45:1619–1623

    Article  CAS  Google Scholar 

  • Garibaldi A and Bateman DF (1971) Pectic enzymes produced by Erwinia chrysanthemi and their effects on plant tissue. Physiol Plant Path 1:25–40

    Article  CAS  Google Scholar 

  • Gaümann E (1957) Fusaric acid as a wilt toxin. Phytopathology 47:342–357

    Google Scholar 

  • Gentile IA and Matta A (1975) Production of and same effects of ethylene in relation to Fusarium wilt of tomato. Physiol Plant Path 5:27–37

    Article  Google Scholar 

  • Girardin JPL (1864) Jahresber Agrikult-Chem Versuchssta Berlin 7:199

    Google Scholar 

  • Glasziou KT (1957) The effect of auxins on the binding of pectin methyl-esterase to cell wall preparations. Aust J Biol Sci 10:426–434

    CAS  Google Scholar 

  • Glasziou KT and Inglis SD (1958) The effect of auxins on the binding of pectin methylesterase to cell walls. Aust J Biol Sci 11:127–141

    CAS  Google Scholar 

  • Godin P (1955) Production of phenolic substances from various ternary compounds by P. brevi-compactum. J Microbiol 21:94–102

    CAS  Google Scholar 

  • Goodman RN, Huang JS and Huang PY (1974) Host-specific phytotoxic polysaccharide from apple tissue infected by Erwinia amylovora. Science 183:1081–1082

    Article  PubMed  CAS  Google Scholar 

  • Gordon SA and Paleg LG (1961) Formation of auxin from tryptophan through action of polyphenols. Plant Physiology 36:838

    Article  PubMed  CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT, Lindberg B and Lindh F (1980) Structure of the extra-cellular polysaccharide from Corynebacterium insidiosum. Carbohydr Res 79:313–315

    Article  PubMed  CAS  Google Scholar 

  • Graniti A (1964) In: Kiraly Z and Ubriszy G (eds) Host-Parasite Relations in Plant Pathology. Budapest, 211–217

    Google Scholar 

  • Grassmann W, Zechmeister L, Bender R and Toth G (1934) Über die Chitinspaltung durch Emulsin-präparate III Mitteil über enzymatiche spaltung von Polysacchariden. Ber Deutch Chem Ges 67:1–5

    Article  Google Scholar 

  • Green RJ Jr (1954) A preliminary investigation of toxins produced in vitro by Verticillium albo-atrum. Phytopathology 44:433–437

    CAS  Google Scholar 

  • Grieve BJ (1939) Epinastic response induced in plants by Bacterium solanacearum EFS. Ann Bot (Lond) 3:587–600

    Google Scholar 

  • Heale-JB and Gupta DP (1972) The mechanism of vascular wilting induced by Verticillium albo-atrum. Trans Brit Mycol Soc 58:19–28

    Article  CAS  Google Scholar 

  • Heitfuss R, Stahmann MA and Walker JC (1960) Oxidative enzymes in cabbage infected by Fusarium oxysporum f. conglutinans. Phytopathology 50:370–375

    Google Scholar 

  • Hiroe I and Nishimura S (1956) Pathochemical studies on watermelon wilt. I On the wilt toxin Phytonivein produced by the causal fungus. Am Phytopathol Soc Japan 29:161–164

    Article  Google Scholar 

  • Howell CR (1976) Use of enzyme-deficient mutants of Verticillium dahliae to assess the importance of enzymes in symptom expression of Verticillium wilt of cotton. Physiol Plant Path 9:279–283

    Article  CAS  Google Scholar 

  • Huberman M and Goren R (1979) Exo-and-endo cellular cellulase and polygalacturonase in abscission-zones of developing orange fruits. Physiol Plantarum 9:279–283

    Google Scholar 

  • Husain A and Kelman A (1958) The role of pectic and cellulotytic enzymes in pathogenesis by Pseudomonas solanacearum. Phytopathology 48:377–386

    CAS  Google Scholar 

  • Husain A and Dimond AE (1960) Role of cellulolytic enzymes in pathogenesis by Fusarium oxysporum f. sp. lycopersici. Phytopathology 50:329–331

    CAS  Google Scholar 

  • Jansen EF, Jang R and Bonner J (1960) Binding of enzymes to Avena coleoptile cell walls. Plant Physiology 35:567–574

    Article  PubMed  CAS  Google Scholar 

  • Jones JF and Kende H (1979) Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L. Planta 146:649–656

    Article  CAS  Google Scholar 

  • Jones TM, Anderson AJ and Albersheim P (1972) Host-pathogen interactions IV. Studies on the polysaccharide degrading enzymes secreted by Fusarium oxysporum f. sp. lycopersici. Physiol Plant Path 2:153–166

    Article  CAS  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD and Albersheim P (1973) The structure of plant cell walls. III A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiology 51:188–197

    Article  PubMed  CAS  Google Scholar 

  • Keen NT, Dahlbeck D, Staskawicz B and Belser W (1984) Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bact 159:825–831

    PubMed  CAS  Google Scholar 

  • Keen NT and Erwin DC (1971) Endopolygalacturonase: evidence against involvement in Verticillium wilt of cotton. Phytopathology 61:198–203

    Article  CAS  Google Scholar 

  • Keen NT, Long M and Erwin DC (1972) Possible involvement of a pathogen produced protein-lipopolysaccharide complex in Verticillium wilt of cotton. Physiol Plant Path 2:317–331

    Article  CAS  Google Scholar 

  • Keen NT and Lang M (1972) Isolation of a protein-lipapolysaccharide complex. Physiol Plant Path 2:307–315

    Article  CAS  Google Scholar 

  • Keissig R and Haller-Keissig R (1957) Beitrage zur Kenntinis einer infektiosen Welkekranheit der Luzerne (Verticillium albo-atrum Reinke et Bert.). Phytopath Z 31:185–222

    Google Scholar 

  • Kelman A and Sequeira L (1965) Root to root spread of Pseudomonas solanacearum. Phytopathology 55:304–309

    Google Scholar 

  • Keon JPR, Byrde RJW and Cooper RM (1987) Some aspects of fungal enzymes that degrade plant cell walls. In: Pegg GF and Ayers PG (eds) Fungal Infection of plants. Cambridge, 134–159

    Google Scholar 

  • Kern H (1972) Phytotoxins produced by Fusaria. In: Wood RKS, Ballio A and Graniti A (eds) Phytotoxins in Plant Disease. Academic Press, New York, 35–48

    Google Scholar 

  • Kern H and Klupfel D (1956) Die bildung von fusarinsäure durch Fusarium lycopersici in vivo. Experientia 12:181–182

    Article  CAS  Google Scholar 

  • Kosuge T (1969) The role of phenolics in hast response to infection. Ann Rev Phytopathol 7:195–111

    Article  CAS  Google Scholar 

  • Ludwig RA (1952) Studies in the physiology of hydromycotic wilting in the tomato plant. Tech Bull MacDonald Agric Coll 20

    Google Scholar 

  • Lund BM (1973) Effect of bacteria on ethylene production. In: Byrde RJW and Cutting CV (eds) Fungal Pathogenicity and the Plant’s Response. Academic Press, London New York, 69–84

    Google Scholar 

  • Mace ME (1963) Histochemical localisation of phenols in healthy and diseased banana roots. Physiol Plant Path 16:915–925

    CAS  Google Scholar 

  • Mace ME (1964) Peroxidases and their relation to vascular browning in banana roots. Phytopathology 54:1033–1034

    Google Scholar 

  • Mace ME and Howell CR (1974) Histochemistry and identification of condensed tannin precursors in the roots of cotton seedlings. Canad J Bot 52:2423–2426

    Article  CAS  Google Scholar 

  • Mace ME and Solit E (1966) Interactions of 3-indoleacetic acid and 3-hydrox-tyramine in Fusarium wilt of banana. Phytopathology 56:245–247

    CAS  Google Scholar 

  • Mace ME, Veech JA and Beckman CH (1972) Fusarium wilt of susceptible and resistant tomato isolines: spore transport. Phytopathology 61:627–630

    Article  Google Scholar 

  • Mace ME and Wilson EM (1964) Phenol oxidases and their relation to vascular browning in Fusarium invaded banana roots. Phytopathology 54:840–842

    CAS  Google Scholar 

  • Malysheva KM and Zel’tser SS (1968) Protein-lipid-polysaccharide complex of culture liquid and mycelium of Verticillium dahliae Kleb, the causative agent of Verticillium wilt in cotton. Doklady Akad nauk SSSR 179:231–234

    CAS  Google Scholar 

  • Mann B (1962) Role of pectic enzymes in the Fusarium wilt syndrome of tomato. Trans Brit Mycol Soc 45:169–178

    Article  CAS  Google Scholar 

  • Marrè E (1979) Fusicoccin: a tool in plant physiology. Ann Rev Plant Physiol 30:273–288

    Article  Google Scholar 

  • Marrè E, Columbo R, Lado R and Rasi-caldogno F (1974) Correlation between proton extrusion and simulation of cell enlargement. Effects of fusicoccin and of cytokinins on leaf fragments and isolated cotyledons. Plant Sci Letters 2:139–150

    Article  Google Scholar 

  • Matta A and Gentile IA (1965) Sul meccanismo di accumulo dell’ acido-indolil-acetico in piante di Pomodor infette da Fusarium oxysporum f. sp. lycopersici. Phytopath Mediterr 4:129–137

    Google Scholar 

  • Matta A, Gentile IA and Gia I (1969) Accumulation of phenols in tomato plants infected by different forms of Fusarium oxysporum. Phytopathology 59:512–513

    CAS  Google Scholar 

  • McDonnell K (1958) Absence of pectolytic enzymes in a pathogenic strain of Fusarium oxysporum f. sp. lycopersici. Nature London 182:1025–1026

    Article  PubMed  CAS  Google Scholar 

  • McIntyre GA (1965) Absence of pectic plugs in tomato cuttings treated with polygalacturonases of Verticillium albo-atrum. Phytopathology 55:1067 (Abstr)

    Google Scholar 

  • McNeil M, Darvill AG, Fry SS and Albersheim P (1984) Structure and function of primary cell walls of plants. Ann Rev Biochem 53:625–663

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP and Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant path 28:161–169

    Article  CAS  Google Scholar 

  • Mueller WC and Beckman CH (1976) Ultrastructure and development of phenolic-storing cells in cotton roots. Can J Bot 54:2074–2082

    Article  Google Scholar 

  • Mussell HW (1972) Toxic proteins secreted by cotton isolates of Verticillium albo-atrum. In: Wood RKS, Ballio A and Graniti A (eds) Phytotoxins in Plant Disease. Academic Press, New York, pp 443–445

    Google Scholar 

  • Mussell HW (1973) Endopolygalacturonase: Evidence for involvement in Verticillium wilt of cotton. Phytopathology 63:62–70

    Article  CAS  Google Scholar 

  • Mussell HW and Green RJ (1970) Host colonisation and polygalaeturonase production by two tracheomycotic fungi. Phytopathology 60:192–195

    Article  CAS  Google Scholar 

  • Mussell HW and Strand LL (1977) Pectic enzymes: involvement in pathogenesis and possible relevance to tolerance and specificity. In: Solheim B and Raa J (eds) Cell Wall Biochemistry Related to Specificity in Hast-Plant Pathogen Interactions. Universitetsforlaget, Oslo, 31–70

    Google Scholar 

  • Mussell HW and Strouse B (1972) Characterisation of two polygalacturonases produced by Verticillium albo-atrum. Canad J Biochem 50:625–632

    Article  CAS  Google Scholar 

  • Nachmias A, Buchner V and Burnstein Y (1985) Biological and immunochemical characterisation of a low molecular weight phytotoxin isolated from a protein-lipopolysaccharide complex produced by a potato isolate of Verticillium dahliae Kleb. Physiol Plant Path 26:43–55

    Article  CAS  Google Scholar 

  • Nachmias A, Buchner V and Krikun J (1982) Comparison of protein-lipopolysaccharide complexes produced by pathogenic and nonpathogenic strains of Verticillium dahliae Kleb. from potato. Physiol Plant Path 20:213–221

    Article  CAS  Google Scholar 

  • Nachmias A, Buchner V, Tsror L, Burnstein Y and Keen N (1987) Differential phytotoxicity of peptides from culture fluids of Verticillium dahliae Races 1 and 2 and their relationship to pathogenicity of the fungi on tomato. Phytopathology 77:506–510

    Article  CAS  Google Scholar 

  • Neilands JB (1973) Microbial iron transport compounds (siderochromes) In: Eiekhorn G (ed) Bioinorganic Chemistry. Elsevier, Amsterdam, pp 167–202

    Google Scholar 

  • Nishimura S (1960) Pathochemical studies on watermelon wilt. 7, The physiology of Fusarium wilt of watermelon plant. Trans Tottori Soc Ag Sci 12:13–17

    CAS  Google Scholar 

  • Page OT (1959) Fusaric acid in banana plants infected with Fusarium oxysporum f. sp. cubense. Phytopathology 49:230

    CAS  Google Scholar 

  • Page OT (1961) Induced variation in Fusarium oxysporum. Canad J Bot 39:1509–1519

    Article  CAS  Google Scholar 

  • Patil SS and Dimond AE (1967) Induction and repression of polygalacturonase synthesis in Verticillium albo-atrum. Phytopathology 57:825

    Google Scholar 

  • Patil SS and Dimond AE (1968) Repression of polygalacturonase synthesis in Fusarium oxysporum f. sp. lycopersici by sugars and its effect upon symptom reduction in infected tomato plant. Phytopathology 58:676–682

    CAS  Google Scholar 

  • Pegg GF (1959) Role of indole-3-acetic acid in the development of disease symptoms in Verticillium wilt of tomato. Proc IX Int Bot Cong Montreal Canada, p 297

    Google Scholar 

  • Pegg GF (1976a) Auxins ethylene gibberellins and inhibitors in healthy and diseased plants. In: Heitfuss R and Williams PH (eds) Encyclopaedia of Plant Physiology, Physiological Plant Pathology. Springer, Berlin Heidelberg New York, 560–616

    Google Scholar 

  • Pegg GF (1976b) The response of ethylene-treated tomato plants to infection by Verticillium albo-atrum. Physiol Plant Path 9:215–226

    Article  CAS  Google Scholar 

  • Pegg GF (1977) Glucanhydrolases of higher plants: a possible defence mechanism against parasitic fungi. In: Solheim B and Raa J (eds) Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interactions. Universitetsforlaget, Oslo 305–342

    Google Scholar 

  • Pegg GF (1981a) Biochemistry and physiology of pathogenesis. In: Mace ME, Bell AA and Beckman CH (eds) Fungal Wilt Diseases of Plants. Academic Press, New York, 193–253

    Google Scholar 

  • Pegg GF (1981b) The involvement of growth substances in the diseased plant. In: Ayres PG (ed) Effects of Disease on the Physiology of the Growing Plant. Cambridge, 149–177

    Google Scholar 

  • Pegg GF (1985) Life in a black hole. The microenvironment of the vascular pathogen. Trans Brit Mycol Soc 85:1–20

    Article  Google Scholar 

  • Pegg GF and Cronshaw DK (1976a) Ethylene production in tomato plants infected with Verticillium albo-atrum. Physiol Plant Path 8:279–295

    Article  CAS  Google Scholar 

  • Pegg GF and Cronshaw DK (1976b) The relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum Infection in tomato. Physiol Plant Path 9:145–154

    Article  CAS  Google Scholar 

  • Pegg GF, Gull K and Newsam RJ (1976) Transmission electron microscopy of Verticillium albo-atrum hyphae in xylem vessels of tomato plants. Physiol Plant Path 8:221–224

    Article  Google Scholar 

  • Pegg GF and Selman IW (1959) An analysis of the growth response of young tomato plants to infection by Verticillium albo-atrum. II The production of growth substances. Ann Appl Biol 47:222–231

    Article  CAS  Google Scholar 

  • Pegg GF and Sequeira L (1968) Stimulation of aromatic biosynthesis in tobacco plants infected with Pseudomonas solanacearum. Phytopathology 58:476–483

    CAS  Google Scholar 

  • Pegg GF and Vessey JC (1973) Chitinase activity in Lycopersicon esculentum and its relationship to the in vivo lysis of Verticillium albo-atrum mycelium. Physiol Plant Path 3:207–222

    Article  CAS  Google Scholar 

  • Pegg GF and Young DH (1981) Changes in glycosidase activity and their relationship to fungal colonisation during infection of tomato by Verticillium albo-atrum. Physiol Plant Path 19:371–382

    CAS  Google Scholar 

  • Pegg GF and Young DH (1982) Purification and characterisation of chitinase enzymes from healthy and Verticillium albo-atrum infected tomato plants and from Verticillium albo-atrum. Physiol Plant Path 21:389–409

    Article  CAS  Google Scholar 

  • Phelps RH and Sequeira L (1968) In: Wightman F and Settefield G (eds) Biochemistry and Physiology of Plant Growth Substances. Runge, Ottawa

    Google Scholar 

  • Pierson CF, Gothoskar SS, Walker JC and Stahmann MA (1955) Histological studies on the role of pectic enzymes in the development of Fusarium wilt symptoms in the tomato. Phytopathology 45:524–527

    Google Scholar 

  • Pollock CJ and Drysdale RB (1976) The role of phenolic compounds in the resistance of tomato cultivars to Verticillium albo-atrum. Phytopath Z 86:56–66

    Article  CAS  Google Scholar 

  • Porter CL and Green RJ (1952) Production of exotoxin in genus Verticillium. Phytopathology 42:472 (Abstr)

    Google Scholar 

  • Puhalla JE and Howell CR (1975) Significance of endopolygalacturonase activity to symptom expression of Verticillium wilt in cotton, assessed by the use of mutants of Verticillium dahliae. Physiol Plant Path 7:147–152

    Article  CAS  Google Scholar 

  • Rai RV and Strobel GA (1969) Phytotoxic glycopeptides produced by Corynebacterium michiganense. II Biological properties. Phytopathology 59:53–57

    CAS  Google Scholar 

  • Rayle DL (1973) Auxin-lnduced hydrogen ion secretion in Avena coleoptiles and its implications. Planta 114:63–73

    Article  CAS  Google Scholar 

  • Reese ET, Maguire AH and Parrish FW (1967) Glucosidases and exoglucanases. Can J Biochem 46:25–34

    Google Scholar 

  • Ries SM and Strobel GA (1972a) A phytotoxic glycopeptide from cultures of Corynebacterium insidiosum. Plant Physiol Lancaster 49:676–684

    Article  CAS  Google Scholar 

  • Ries SM and Strobel GA (1972b) Biological properties and pathological role of a phytotoxic glycopeptide from Corynebacterium insidiosum. Physiol Plant Path 2:133–142

    Article  CAS  Google Scholar 

  • Riov J, Monselise SP and Kahan RS (1969) Ethylene induction of phenylalanine ammonia lyase in citrus fruit peel. Plant Physiology 44:631–635

    Article  PubMed  CAS  Google Scholar 

  • Salemink CA, Rebel H, Kerling LCP and Tchernoff V (1965) Phytotoxin isolated from liquid cultures of Ceratocystis ulmi. Science 149:202–203

    Article  PubMed  CAS  Google Scholar 

  • Scheffer RJ and Eigersma DM (1981) Detection of a phytotoxic glycopeptide produced by Ophiostoma ulmi in elm by enzyme-linked immuno-specific assay (ELISA). Physiol Plant Path 18:27–32

    CAS  Google Scholar 

  • Scheffer RP and Walker JC (1953) The physiology of Fusarium wilt of tomato. phytopathology 43:116–125

    Google Scholar 

  • Scholander PF, Rudd B and Leivestad H (1957) The rise of sap in a tropical liana. Plant Physiology 32:1–6

    Article  PubMed  CAS  Google Scholar 

  • Selman IW and Pegg GF (1957) An analysis of the growth response of young tomato plants to infection by Verticillium albo-atrum. Ann Appl Biol 45:675–681

    Google Scholar 

  • Sequeira L (1963) Growth regulators in plant disease. Ann Rev Phytopathol 1:5–30

    Article  CAS  Google Scholar 

  • Sequeira L (1965) Origin of indoleacetic acid in tobacco plants infected by Pseudomonas solanacearum. Phytopathology 55:1232–1236

    CAS  Google Scholar 

  • Sequeira L (1969) Synthesis of scopolin and scopoletin in tobacco plants infected by Pseudomonas solanacearum. Phytopathology 59:473–478

    CAS  Google Scholar 

  • Sequeira L (1973) Hormone metabolism in diseased plants. Ann Rev Plant Phys 24:353–380

    Article  CAS  Google Scholar 

  • Sequeira L and Williams PH (1964) Synthesis of indoleacetic. acid by Pseudomonas solanacearum. Phytopathology 54:1240–1246

    CAS  Google Scholar 

  • Singh D, Brinkerhoff LA and Guinn G (1971) Effect of alanine on development of Verticillium wilt in cotton cultivars with different levels of resistance. Phytopathology 61:881–882

    Article  CAS  Google Scholar 

  • Singh D and Smalley EB (1969) Changes in amino acid and sugar constituents of the xylem sap of American Elm following inoculation with Ceratocystis ulmi. Phytopathology 59:891–896

    CAS  Google Scholar 

  • Smidt M and Kosuge T (1978) The role of indole-3-acetic acid accumulation by alpha-methyl tryprophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Path 13:203–214

    Article  CAS  Google Scholar 

  • Spencer JFT and Gorin PAJ (1961) The occurrence in the host plant of physiologically-active gums produced by Corynebacterium insidiosum. Canad J Microbiol 7:185–188

    Article  Google Scholar 

  • Straley CS, Straley ML and Strobel GA (1974) Rapid screening for bacterial wilt resistance in alfalfa with a phytotoxic glycopeptide from Corynebacterium insidiosum. Phytopathology 64:194–196

    Article  CAS  Google Scholar 

  • Stamm AJ and Wagner E (1961) Determining the distribution of interstructural openings in wood. For Prod J 11:141–144

    CAS  Google Scholar 

  • Steadman JR and Sequeira L (1969) A growth inhibitor from tobacco and its possible involvement in pathogenesis. Phytopathology 59:499–503

    CAS  Google Scholar 

  • Stevenson KJ, Slater JA and Takai S (1979) Cerato-ulmin a wilting toxin of Dutch Elm disease fungus. Phytochem 18:235–238

    Article  CAS  Google Scholar 

  • Stoddart JL and Carr AHJ (1966) Properties of wilt toxins produced by Verticillium albo-atrum Reinke and Berth. Ann Appl Biol 58:81–92

    Article  CAS  Google Scholar 

  • Takai S (1974) Pathogenicity and cerato-ulmin production in Ceratocystis ulmi. Nature 252:124–126

    Article  PubMed  CAS  Google Scholar 

  • Takai S, Richards WC and Stevenson KJ (1983) Evidence for the involvement of cerato-ulmin, the Ceratocystis ulmi toxin, in the development of Dutch elm disease. Physiol Plant Path 23:275–280

    Article  CAS  Google Scholar 

  • Talboys PW (1968) Water deficits in vascular disease. In: Kozlowski T (ed) Water Deficits and Plant Growth. Vol II. Acad Press, New York, 255–311

    Google Scholar 

  • Talboys PW and Busch LV (1970) Pectic enzymes produced by Verticillium species. Trans Brit Mycol Soc 55:367–381

    Article  CAS  Google Scholar 

  • Talboys PW (1978) Simulation of the symptoms of hop Verticillium wilt by model toxins. In: Pathological Wilting of Plants. Univ Madras, India, 231–246

    Google Scholar 

  • Talmadge KW, Keegstra K, Bauer WD and Albersheim P (1973) The structure of plant cell walls. I.The macromolecular components of the walls of suspension cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiology 51:158–173

    Article  PubMed  CAS  Google Scholar 

  • Taylor JB and Flentje NT (1968) Infection, recovery from infection and resistance of apricot trees to Verticillium albo-atrum. New Zeal J Bot 6:417–426

    Article  Google Scholar 

  • Trione EJ (1960) Extracellular enzyme and toxin production by Fusarium oxysporum f. sp. lini. Phytopathology 50:480–482

    CAS  Google Scholar 

  • Van Alfen NK (1982) Wilt concepts and mechanisms. In: Mount MS and Lacey GH (eds) Phytopathogenic Prokaryotes Vol 1. Acad Press, New York

    Google Scholar 

  • Van Alfen NK and Allard-Turner V (1979) Susceptibility of plants to vascular disruption by macromolecules. Plant Physiology 63:1072–1075

    Article  PubMed  Google Scholar 

  • Van Alfen NK and McMillan BD (1982) Macromolecular plant-wilting toxins: Artifacts of the bioassay method. Phytopathology 72:132–135

    Article  Google Scholar 

  • Van Alfen NK, McMillan BD, and Dryden P (1987a) The multicomponent extracellular polysaccharide of Clavibacter michiganensis subsp. insidiosum. Phytopathology 77:496–501

    Article  Google Scholar 

  • Van Alfen NK, McMillan BD and Wang Y (1987b) Properties of the extracellular polysaccharide of Clavibacter michiganensis subsp. insidiosum that may affect pathogenesis. Phytopathology 77:501–505

    Article  Google Scholar 

  • Van Alfen NK and Turner NC (1975a) Changes in alfalfa stem conductance induced by Corynebacterium insidiosum. Plant Physiology 45:304–309

    Google Scholar 

  • Van Alfen NK and Turner NC (1975b) Influence of a Ceratocystis ulmi toxin on water retention of elm (Ulmus americana). Plant Physiology 55:312–316

    Article  PubMed  Google Scholar 

  • VanderMolen GE, Labavitch JM, Strand LL and DeVay J (1983) Pathogen-induced vascular gels: ethylene as a host intermediate. Physiol Plant 59:573–580

    Article  CAS  Google Scholar 

  • VanderMolen GE, Beckman CH and Rodehorst E (1987) The ultrastructure of tylose formation in resistant banana following inoculation with Fusarium oxysporum f. sp. cubense. Physiol Mole Plant Path 31:185–200

    Article  Google Scholar 

  • Waggoner PE and Dimond AE (1956) Polyphenol oxidases and substrates in potato and tomato stems. Phytopathology 46:495–497

    CAS  Google Scholar 

  • Wallis FM and Truter SJ (1978) Histolopathology of tomato plants infected with Pseudomonas solanacearum with emphasis on ultrastructure. Physiol Plant Path 13:307–317

    Article  Google Scholar 

  • Wallis FM, Rijkenberg FHJ, Joubert JJ and Martin MM (1973) Ultrastructural histopathology of cabbage leaves infected with Xanthomonas campestris. Physiol Plant Path 3:371–379

    Article  Google Scholar 

  • Wellman FL (1941) Epinasty of tomato, one of the earliest symptoms of Fusarium wilt. Phytopathology 31:281–283

    Google Scholar 

  • Weise MV and DeVay JE (1970) Growth regulator changes in cotton associated with defoliation caused by Verticillium albo-atrum. Plant Physiology 45:304–309

    Article  Google Scholar 

  • Wilhelm S and Taylor JB (1965) Control of Verticillium wilt of olive through natural recovery and resistance. Phytopathology 55:311–361

    Google Scholar 

  • Wood RKS (1961) Verticillium wilt of tomatoes – the role of pectic and cellulolytic enzymes. Ann Appl Biol 49:120–139

    Article  CAS  Google Scholar 

  • Wright STC and Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached leaves by a period of wilting. Nature 224:719–720

    Article  CAS  Google Scholar 

  • Xu P, Leong BA and Sequeira L (1987) Molecular cloning of genes encoding virulence in Pseudomonas solanacearum. Phytopathology 77:1772 (Abstr)

    Google Scholar 

  • Young DH and Pegg GF (1981) Purification and characterisation of 1,3- glucan hydrolases from healthy and Verticillium albo-atrum-infected tomato plants. Physiol Plant Path 19:391–417

    CAS  Google Scholar 

  • Young DH and Pegg GF (1982) The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of V. albo-atrum. Physiol Plant Path 21:411–423

    Article  CAS  Google Scholar 

  • Zel’tser SS and Avazkhodzhaev MK (1973) The characteristics of the polysaccharide fractions from the cultural liquid of the cotton wilt causal agent. Sel’skokhoz Biol 8:66–69

    Google Scholar 

  • Zel’tser SS and Malysheva KM (1966) Carbohydrate metabolites extracted from Verticillium in a culture medium Vilt Khlopkovodstva 96–100. Chem Absts (1968) 8:10542

    Google Scholar 

  • Zimmerman MB and Brown CL (1971) Trees, Structure and Function. Springer, Berlin New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pegg, G.F. (1989). Pathogenesis in Vascular Diseases of Plants. In: Tjamos, E.C., Beckman, C.H. (eds) Vascular Wilt Diseases of Plants. NATO ASI Series, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73166-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73166-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73168-6

  • Online ISBN: 978-3-642-73166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics