Skip to main content

Modulation of Purine Release from Electrically-Stimulated Cortical Slices of the Rat: Interaction with the Cholinergic System

  • Conference paper
Modulation of Synaptic Transmission and Plasticity in Nervous Systems

Part of the book series: NATO ASI Series ((ASIH,volume 19))

  • 104 Accesses

Abstract

The activity and role of adenosine in the central nervous system have been extensively described in several recent reviews (Su et al. 1983; Dunviddie 1985; Snyder 1985) from which it appears that adenosine fulfills many of the criteria which define a neurotransmitter or neuromodulator. Adenosine is present in neuronal somata and axons of discrete brain areas including certain layers of the cerebral cortex (Braas et al. 1986). A release of adenosine from nervous tissue, evoked by electrical stimulation or by depolarizing agents, has been repeatedly demonstrated in both “in vivo” (Sulakhe and Phillis 1975; Lee et al. 1982) and “in vitro” studies (Pull and Mc Ilwain 1972; Hollins and Stone 1980; Mc Donald and White 1985). Adenosine reaches in the extracellular fluid of brain “in vivo” concentrations sufficient to exert physiological effects (Zetterstrom et al. 1982). Adenosine effects are exerted through specific receptors which can be distinguished by their actions on adenylate cyclase (Hamprecht and Van Calker 1980) or by the use of specific receptor agonists (Londos et al. 1977) into A1 and A2 subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beani L, Bianchi C, Giacomelli A, Tamberi F, (1978) Noradrenaline inhibition of acetylcholine release from guinea pig brain. Eur J. Pharmacol 48: 179–193

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, Newby AC, Wilson VS, Snyder SH (1986) Adenosine-containing neurons in the brain localized by immunocytochemistry. J Neurosci 6(7): 1952–1261

    PubMed  CAS  Google Scholar 

  • Bucher RW, Sutherland EW (1962) Adenosine 3’-5’ phosphate in biological material. J Biol Chem 237: 1244–1250

    Google Scholar 

  • Corradetti R, Lo Conte G, Moroni F, Passani MB, Pepeu G (1984) Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Curnish RR, Bencherif M, Rubio R, Berne RM (1986) Phosphatidylinositol (PI) turnover is inhibited by adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion. Pfluger Archiv Eur J Physiol 407 (Suppl n.l): 541

    Google Scholar 

  • Daval JL, Barberis C (1981) Release of radiolabeled adenosine derivatives from superfused synaptosomal bed: evidence for the output of adenosine. Biochem Pharmacol 18: 2559–2567

    Article  Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. International review of Neurobiology. Smythies JR, Bradley RJ (eds) 63–139.Academic Press London

    Google Scholar 

  • Dunwiddie TV, Hoffer BJ (1980) Adenine nucleotides and synaptic transmission in the “in vitro” rat hippocampus. Br J Pharmac 69: 59–68

    CAS  Google Scholar 

  • Fredholm BB,Dunér-Engström M, Fastbom J, Jonzon B, Lindgren E, Nordstedt C, Pedata F, Van der Ploeg I (1987) Interactions between the neuromodulator adenosine and the classic transmitters. In “Topics and perspective in adenosine research” Gerlach E, Becker BF (eds) Springer Verlag Berlin Heidelberg pp 509–520

    Google Scholar 

  • Fredholm BB, Sollevi A (1981) The release of adenosine and inosine from canine subcutaneous adipose tissue by nerve stimulation and noradrenaline. J Physiol (London) 313: 351–367

    CAS  Google Scholar 

  • Hamprecht B, Van Calker D (1985) Nomenclature of adenosine receptors. TIPS 6: 153–154

    CAS  Google Scholar 

  • Henon BK, McAfee DA (1983) The ionic basis of adenosine receptors action on post-ganglionic neurones in the rat. J Physiol 336: 607–620

    PubMed  CAS  Google Scholar 

  • Hollins C, Stone TW (1980) Characteristics of the release of adenosine from slices of rat cerebral cortex. J Physiol (London) 303: 73–82

    CAS  Google Scholar 

  • Israel M, Lesbats B, Manaranche R, Meunier FM, Fachon P (1980) Retrograde inhibition of transmitter release by ATP. J Neurochem 34: 923–932

    Article  PubMed  CAS  Google Scholar 

  • Jackish R, Strittmatter H, Hasakov L, Herting G (1984) Endogenous adenosine as a modulator of hippocampal acetylcholine release. Naunyn-Schmiedebergs Arch Pharmacol 327: 319–325

    Article  Google Scholar 

  • Jhamandas K, Dumbrille A (1980) Regional release of 3H adenosine derivatives from rat brain in vivo: effect of excitatory aminoacids, opiate agonists and benzodiazepines. Can J Physiol Pharmacol 58: 1262–1278

    PubMed  CAS  Google Scholar 

  • Johnson PN, Inesi G (1969) The effect of methylxanthines and local anaesthetics on fragmented sarcoplasmic reticulum. J Pharmac Exp Ther 169: 308–314

    CAS  Google Scholar 

  • Jonzon B, Fredholm BB (1985) Release of purines, noradrenaline and GABA from rat hippocampal slices by field stimulation. J Neurochem 44: 217–244

    Article  PubMed  CAS  Google Scholar 

  • Kalsner S (1985) Is there feedback regulation of neurotransmitter release by autoreceptors? Biochem Pharmac 34: 4085–4097

    Article  CAS  Google Scholar 

  • Kuroda Y, Mcllwain H (1974) Uptake and release of 14C adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J Neurochem 22: 691–699

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Schubert P, Gribkoff V, Sherman B, Lynch G (1982) A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus. J Neurochem 23: 309–314

    Google Scholar 

  • Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74: 5482–5486

    Article  PubMed  CAS  Google Scholar 

  • MacDonald WF, White TD (1985) Nature of extrasynaptosomal accumulation of endogenous adenosine evoked by K+ and veratridine. J Neurochem 45: 791–797

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev 54: 813–888

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Kuroda Y (1980) Inhibitory action of adenosine and adenosine analogs on neurotransmission in the olfactory cortex slice of guinea-pig structure-activity relationships. Eur J Pharmacol 61: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Orrego F (1979) Criteria for the identification of central neurotransmitter and their application to studies with some nerve tissue preparation in vitro. Neurosci 4: 1037–1057

    Article  CAS  Google Scholar 

  • Pedata F, Antonelli T, Lambertini L, Beani L, Pepeu G (1983) Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophilline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacology 22: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Pedata F, Pepeu G, Spignoli G (1984) Biphasic effect of methylxanthines on acetylcholine release from electrically-stimulated brain slices. Br J Pharmac 83: 69–73

    CAS  Google Scholar 

  • Pedata F, Giovannelli L, De Sarno P, Pepeu G (1986) Effect of adenosine, adenosine derivatives and caffeine on acetylcholine release from brain synaptosomes: interaction with muscarinic autoregulatory mechanisms. J Neurochem 46: 1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1980) 4-aminopyridine blockade of neuronal depressant responses to adenosine triphosphate. Br J Pharmac 70: 425–428

    CAS  Google Scholar 

  • Phillis JW, Kostopulos GK (1975) Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci 17: 1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PM (1983) In: Physiology and Pharmacology of Adenosine Derivatives. Daly JW, Kuroda Y, Phillis JW, Shimuzu H, Ui M (eds) Raven New York

    Google Scholar 

  • Pull I, Mcllwain H (1972) Adenine derivatives as neurohumoral agents. The quantities liberated on excitation of superfused cerebral tissues. Biochem J 130: 975–981

    PubMed  CAS  Google Scholar 

  • Pull I, Mcllwain H (1973) Output of (14C)Adenine nucleotides and their derivatives from central tissues. Biochem J 136: 893–901

    PubMed  CAS  Google Scholar 

  • Schweinsberg PD, Loo TL (1980) Simultaneous analysis of ATP, ADP, AMP and other purines in human erythrocytes by high- performance liquid chromatography. J Chromatogr 181: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Segal M (1982) Intracellular analysis of a post-synaptic action of adenosine in the rat hippocampus. Eur J Pharmacol 79: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1985) Adenosine as a neuromodulator. Ann Rev Neurosci 8: 103–124

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1981) Physiological roles for adenosine and adenosine 51 triphosphate in the nervous system. Neurosci 6: 523–555

    Article  CAS  Google Scholar 

  • Stone TW, Hollins C, Lloyd H (1981) Methylxanthines modulate adenosine release from slices of cerebral cortex. Brain Res 207: 421–431

    Article  PubMed  CAS  Google Scholar 

  • Sulakhe PV, Phillis JW (1975) The release of (3H) adenosine and its derivatives from cat sensorimotor cortex. Life Sci 17: 551–556

    Article  PubMed  CAS  Google Scholar 

  • Su C (1983) Purinergic neurotransmission and neuromodulation. Ann Rev Pharmacol Toxicol 23: 397–411

    Article  CAS  Google Scholar 

  • Worley PF, Baraban JM, McCarren M, Snyder SM, Alger BE (1987) Cholinergic phosphatidynositol modulation of inhibitory, G protein-linked, neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc Natl Acad Sci 84: 3467–3471

    Article  PubMed  CAS  Google Scholar 

  • Wu PM, Phillis JW (1984) Uptake by central nervous tissues as a mechanism, for the regulation of extracellular adenosine concentrations. Neurochem Int 6: 613–632

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom T, Ungerstedt VU, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29: 111–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pedata, F., Pepeu, G. (1988). Modulation of Purine Release from Electrically-Stimulated Cortical Slices of the Rat: Interaction with the Cholinergic System. In: Hertting, G., Spatz, HC. (eds) Modulation of Synaptic Transmission and Plasticity in Nervous Systems. NATO ASI Series, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73160-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73160-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73162-4

  • Online ISBN: 978-3-642-73160-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics