Skip to main content

Induction and Maintenance of Long-Term Potentiation in the Hippocampus

  • Conference paper
Modulation of Synaptic Transmission and Plasticity in Nervous Systems

Part of the book series: NATO ASI Series ((ASIH,volume 19))

Abstract

There is increasing evidence to suggest that at least some types of learning are encoded in the mammalian brain by a form of synaptic plasticity that may be broadly described as Hebbian, in that underlying changes in synaptic strength occur as the result of coincident preand post-synaptic activity (Hebb, 1949; Singer, 1987; Ito, 1987). A widely-studied example of this sort of plasticity is the enduring enhancement of synaptic transmission known as long-term potentiation (LTP), which is produced with beguiling ease by the application of brief trains of high-frequency stimulation to any of the main excitatory pathways of the hippocampal formation (Bliss and Lomo, 1973; Teyler and DiScenna, 1987; Bliss and Lynch, 1988). In the last few years a concensus has developed regarding the cellular events leading to the initiation of LTP; in this view, LTP develops, in susceptible synapses, whenever there is a conjunction of synaptic activity and strong postsynaptic depolarization, conditions which allow the opening of the voltage-dependent ion channel associated with the NMDA subtype of glutamate receptor. A similar concensus on how the potentiated state is maintained has yet to emerge, with evidence for persistent changes in transmitter release and in synaptic morphology, possibly reflecting changes in protein phosphorylation, redistribution of calcium stores, and changes in protein synthesis. In this chapter we present a summary of the evidence which has led to our present understanding of the mechanisms responsible for the induction and maintenance of LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen P, Sundberg SH, Sveen 0, Wigstrom H (1977): Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266: 736–737.

    Article  PubMed  CAS  Google Scholar 

  • Barrionuevo G, Brown TH (1983): Associative long-term potentiation in the hippocampal slices. Proc Natl Acad Sci USA 80: 7347–7351.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Dolphin AC, Errington ML, Fazeli MS (1987): Increase in concentration of specific extracellular proteins during long-term potentiation in the dentate gyrus of the rat. J Physiol 388: 49P.

    Google Scholar 

  • Bliss TVP, Douglas RM, Errington ML, Lynch MA (1986): Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J Physiol 377: 391–408.

    PubMed  CAS  Google Scholar 

  • Bliss TVP, Errington ML, Laroche S, Lynch MA (1987): Increase in K+ stimulated, Ca2+dependent release of [3H]glutamate from rat dentate gyrus three days after induction of long-term potentiation. Neurosci Lett 83: 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Errington ML, Lynch MA (1986): Calcium-induced long-term potentiation in the dentate gyrus is accompanied by a sustained increase in glutamate release. In Hicks TP, Lodge D (eds): Excitatory Amino Acid Transmitters. New York: Alan R Liss, Inc., pp 337–340.

    Google Scholar 

  • Bliss TVP, Errington ML, Lynch MA, Williams JH (1988): The lipoxygenase inhibition nordihydroguaiaretic acid (NDGA) blocks the induction of both tetanus-induced and calcium-induced long-term potentiation in the hippocampus of the rat. Pflug Arch Suppl. In press.

    Google Scholar 

  • Bliss TVP, Lomo T (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.

    PubMed  CAS  Google Scholar 

  • Bliss TVP, Lynch MA (1988): Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In Landfield PW, Deadwyler SA (eds): Long-term potentiation: From Biophysics to Behavior. New York: Alan R Liss Inc, pp 3–72.

    Google Scholar 

  • Brown TH, Chang VC, Ganong AH, Keenan CL, Kelso SR (1988). Biophysical properties of dendrites and spines that may control the induction and expression of long-term synaptic potentiation. In Landfield PW, Deadwyler SA (eds): Long-term potentiation: From Biophysics to Behavior. New York: Alan R Liss Inc, p. 197.

    Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan, H (1983): Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334: 33–46.

    PubMed  CAS  Google Scholar 

  • Dolphin AC, Errington ML, Bliss TVP (1982): Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature 297: 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Duffy C, Teyler TJ, Shashoua VE (1981): Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins. Science 212: 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Errington ML, Lynch MA, Bliss TVP (1987): Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(-)aminophosphonovalerate. Neuroscience 20: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Feasey KJ, Lynch MA, Bliss TVP (1986): Long-term potentiation is associated with an increase in calcium-dependent, potassium-stimulated release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat. Brain Res 364: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Castelluci VF, Schacher S, Kandel ER (1986): The long and the short of long-term memory - a molecular framework. Nature 322: 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths J.S. (1966): A theory of the nature of memory. Nature 211: 1160- 1163.

    Google Scholar 

  • Harris EW, Cotman CW (1986): Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci Lett 70: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949): The Organization of Behavior. New York: Wiley.

    Google Scholar 

  • Hu G-Y, Hvalby O, Walaas SI, Albert KA, Skjeflo P, Andersen P, Greengard P. (1987): Protein kinase C injection into hippocampal pyramidal cells elicits features of long-term potentiation. Nature 328: 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Hunt SF, Pini A, Errington ML, Bliss TVP, Evan G (1987): Induction of c-fos protein in neurons of the central nervous system. Abstr Neurosci Soc 13: 1597.

    Google Scholar 

  • Hvalby O, Lacaille JC, Hu G-Y, Andersen P (1987): Postsynaptic long-term potentiation follows coupling of dendritic glutamate application and synaptic activation. Experientia 43: 599–601.

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1987): Characterization of synaptic plasticity in the cerebellar and cerebral neocortex. In Changeux J-P, Konishi M (eds): The Neural and Molecular Bases of Learning. Dahlem Konferenzen. Chichester: Wiley, pp 263–278.

    Google Scholar 

  • Kelso SR, Ganong AH, Brown TH (1986): Hebbian synapses in hippocampus. Proc Natl Acad Sci USA 83: 5326–5330.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB (1987): Neuronal biochemical regulatory mechanisms. In Changeux J-P, Konishi M (eds): The Neural and Molecular Bases of Learning. Dahlem Konferenzen. Chichester: Wiley, pp 137–150.

    Google Scholar 

  • Levy WB, Steward O (1979): Synapses as associative memory elements in the hippocampal formation. Brain Res 175: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, Akers RF, Nelson RB, Barnes CA, McNaughton BL, Routtenberg A (1985): A selective increase in phosphorylation of protein Fl, a protein kinase C substrate, directly related to three day growth of synaptic long- term enhancement. Brain Res 343: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984): The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Dunwiddie T, Gribkoff V (1977): Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler, F (1983): Intracellular injections of EGTA block induction of hippocampal long- term potentiation. Nature 305: 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Clements MP, Errington ML, Bliss TVP (1988): On the mechanism of increased transmitter release in LTP: measurement of calcium concentration and phosphatidylinositol turnover in synaptosomes. In HL Haas and G. Buzsaki (eds): Synaptic Plasticity in the Hippocampus. Heidelberg: Springer Verlag, pp 110–113.

    Chapter  Google Scholar 

  • Lynch MA, Clements MP, Errington ML, Bliss TVP (1988): Increased hydrolysis of phosphatidylinositol–4–5-bisphosphate in long-term potentiation. Neurosci Lett: In press.

    Google Scholar 

  • MacDermott A, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986): NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Douglas RM, Goddard GV (1978): Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157: 277–293.

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Malinow R, Tsien RW (1988): Inhibitors of protein kinase C block long-term potentiation in rat hippocampus. J. Physiol (Proc): In press.

    Google Scholar 

  • Malenka RC, Madison DV, Nicoll RA (1986): Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321: 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986): Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D- aspartate receptor antagonist, AP5. Nature 319: 774–776.

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. (1984): Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307: 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, Schwartz JH and Belardetti F (1987): Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Reymann KG, Matthies H (1987): Hippocampal long-term potentiation is blocked by polymixin B - an inhibitor of protein kinase C. Neurosci Suppl 22: S410.

    Google Scholar 

  • Reymann KG, Matthies HK, Frey U, Vorobyev VS, Matthies H (1986): Calcium- induced long-term potentiation in the hippocampal slice: characterization of the time course and conditions. Brain Res Bull 17: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Sastry BR, Goh JW, Auyeung A (1986): Associative induction of posttetanic and long-term potentiation in CA1 neurons of rat hippocampus. Science 232: 988–990.

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1987): Activity-dependent self-organization of synaptic connections as a substrate of learning. In Changeux J-P, Konishi M (eds): The Neural and Molecular Bases of Learning. Dahlem Konferenzen. Chichester: Wiley, pp 301–335

    Google Scholar 

  • Schrama LH, De Graan PNE, Wadman WJ, Gispen WH (1986): Long-term potentiation and 4-aminopyridine-induced changes in protein- and lipid-phosphorylation in the hippocampal slice. In Gispen WH, Routtenberg A (eds): Function of Neural Phosphoproteins. Prog Brain Res 69: Amsterdam: Elsevier.

    Google Scholar 

  • Skrede K, Malthe-Sorenssen D (1981): Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: a biochemical correlate to long-lasting synaptic potentiation. Brain Res 208: 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Turner RW, Baimbridge KG, Miller JJ (1982): Calcium-induced long-term potentiation in the hippocampus. Neuroscience 7: 1411–1416.

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, DiScenna P (1987): Long-term potentiation. In Cowan WM, Shooter EM, Stevens CF, Thompson, RF (eds): Annual Review of Neuroscience 10: 131–161.

    Google Scholar 

  • Wigstrom H, Gustafsson B (1983): Heterosynaptic modulation of long- lasting potentiation in the hippocampal slice. Acta Physiol Scand 119: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Wigstrom H, Gustafsson B (1985): On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. Acta Physiol Scand 123: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Wigstrom H, Gustafsson B, Huang Y-Y, Abraham WC (1986): Hippocampal long-lasting potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand 126: 317–319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bliss, T.V.P., Errington, M.L., Lynch, M.A. (1988). Induction and Maintenance of Long-Term Potentiation in the Hippocampus. In: Hertting, G., Spatz, HC. (eds) Modulation of Synaptic Transmission and Plasticity in Nervous Systems. NATO ASI Series, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73160-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73160-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73162-4

  • Online ISBN: 978-3-642-73160-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics