Neurotransmitters, Ion Channels and Second Messengers in the Hippocampus

  • R. C. Malenka
  • D. V. Madison
  • P. Dutar
  • R. Andrade
  • R. A. Nicoll
Conference paper
Part of the NATO ASI Series book series (volume 19)

Abstract

The mechanisms by which neurotransmitter receptors are coupled to ion channels has been the focus of a great deal of research since the discovery that neurotransmitters can alter neuronal excitability by acting on voltage-dependent, as well as voltage-independent, ion channels. Using the in vitro hippocampal slice preparation we have examined the role of second messenger systems and GTP-binding proteins (G-proteins) in mediating the actions of a variety of neurotransmitters found in the hippocampus. Specifically we have examined the actions of norepinephrine (NE), acetylcholine (ACh), serotonin (5-HT), and baclofen (a GABAB receptor agonist).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAb receptors to the same potassium channels in hippocampus. Science 234:1261–1265PubMedCrossRefGoogle Scholar
  2. Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol, in pressGoogle Scholar
  3. Baraban JM, Snyder SH, Alger BE (1985) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc Natl Acad Sci 82:2538–2542PubMedCrossRefGoogle Scholar
  4. Benardo LS, Prince DA (1982) Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res 249:333–344PubMedCrossRefGoogle Scholar
  5. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321PubMedCrossRefGoogle Scholar
  6. Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221:1299–1301PubMedCrossRefGoogle Scholar
  7. Cole AE, Nicoll RA (1984) Characterization of a slow cholinergic postsynaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol 352:173–188PubMedGoogle Scholar
  8. Dutar P, Nicoll RA (1987) A role for phosphatidylinositol (PI) turnover in the muscarinic blockade of the M-current in hippocampal pyramidal cells. Neurosci Abst 13, in press.Google Scholar
  9. Fisher SK, Klinger PD and Agranoff BW (1983) Muscarinic agonist binding and phospholipid turnover in brain. J Biol Chem 258:7358–7363PubMedGoogle Scholar
  10. Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302:432–434PubMedCrossRefGoogle Scholar
  11. Halliwell JV and Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92PubMedCrossRefGoogle Scholar
  12. Jakobs KH, Bauer S, Watanabe Y (1985) Modulation of adenylate cyclase of human platelets by phorbol esters. Eur J Biochem 151:425–430PubMedCrossRefGoogle Scholar
  13. Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–434PubMedCrossRefGoogle Scholar
  14. Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187–204PubMedGoogle Scholar
  15. Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–638PubMedCrossRefGoogle Scholar
  16. Madison DV, Nicoli RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J Physiol 354:319–331PubMedGoogle Scholar
  17. Madison DV, Nicoli RA (1986a) Actions of noradrenaline recorded intracellular in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol 372:221–244PubMedGoogle Scholar
  18. Madison DV, Nicoli RA (1986b) Cyclic adenosine 3‘5’-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol 372:245–259PubMedGoogle Scholar
  19. Madison DV, Lancaster B and Nicoli RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J. Neurosci. 7:733–741PubMedGoogle Scholar
  20. Madison DV, Malenka RC and Nicoli RA (1986) Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321:695–697PubMedCrossRefGoogle Scholar
  21. Malenka RC, Madison DV, Andrade R, Nicoli RA (1986a) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J Neurosci 6:475–480PubMedGoogle Scholar
  22. Malenka RC, Madison DV, Nicoli RA (1986b) Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321:175–177PubMedCrossRefGoogle Scholar
  23. Malenka RC, Ayoub GS, Nicoli RA (1987) Phorbol esters enhance transmitter release in rat hippocampal slices. Brain Res 403:198–203PubMedCrossRefGoogle Scholar
  24. Newberry NR, Nicoli RA (1985) Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol 360:161–185PubMedGoogle Scholar
  25. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698PubMedCrossRefGoogle Scholar
  26. Rogawski MA, Aghajanian GK (1980) Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation. Nature 287:731–734PubMedCrossRefGoogle Scholar
  27. Segal M (1980) The action of serotonin in the rat hippocampal slice preparation. J Physiol 303:423–439PubMedGoogle Scholar
  28. Storm JF (1987) Action potential repolarization and a fast afterhyper- polarization in rat hippocampal pyramidal cells. J Physiol 385:733–759PubMedGoogle Scholar
  29. Tokimasa T (1985) Intracellular Ca2+-ions inactivate K+-current in bullfrog sympathetic neurons. Brain Res 337:386–391PubMedCrossRefGoogle Scholar
  30. Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38:2109–2116PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. C. Malenka
    • 1
  • D. V. Madison
    • 1
  • P. Dutar
    • 1
  • R. Andrade
    • 1
  • R. A. Nicoll
    • 1
  1. 1.Departments of Pharmacology and PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations