Advertisement

Participation of Regulatory G-Proteins and Protein Kinase C in the Modulation of Transmitter Release in Hippocampus

  • G. Hertting
  • S. Wurster
  • P. Gebicke-Härter
  • C. Allgaier
Part of the NATO ASI Series book series (volume 19)

Abstract

1.) Regulatory G-proteins participate in the inhibition of noradrenaline (NA) and acetylcholine (ACh) release following activation of the respective autoreceptors (α2, M2). Isletactivating protein (IAP) and N-ethylmaleimide (NEM) increased the electrically evoked release of [3 H]NA and [3 H]ACh from hippocampal slices and reduced inhibition of release by the autoreceptor agonists clonidine and carbachol as well as its facilitation by the antagonists yohimbine and atropine. In synaptosomes prepared from rabbit hippocampus two polypeptides with molecular weights corresponding to those of Gi α and Go α a were [32P]ADP-ribosylated by IAP in the presence of [3 2P]NAD+. Pretreatment of synaptosomes with NEM reduced the subsequent [3 2P]ADP-ribosylation by IAP in a concentration-dependent manner.

Keywords

Hippocampal Slice Phorbol Ester Transmitter Release Noradrenaline Release Adenosine Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgaier C, Feuerstein TJ, Jackisch R, Hertting G (1985) Islet-activating protein (pertussis toxin) diminishes ct2 - adrenoceptor mediated effects on noradrenaline release. Naunyn-Schmiedeberg’s Arch. Pharmacol. 331:235–239.Google Scholar
  2. Allgaier C, Hertting G (1986) Polymyxin B, a selective inhibi bitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12,13-dibutyrate. Naunyn Schmiedeberg’s Arch. Pharmacol. 334:218–221.Google Scholar
  3. Allgaier C, Feuerstein TJ, Hertting G (1986a) N-ethylmaleimide (NEM) diminishes α2 -adrenoceptor mediated effects on noradrenaline release. Naunyn-Schmiedebergs Arch. Pharmacol. 333:104–109.Google Scholar
  4. Allgaier C, Von Kugelgen O, Hertting G (1986b) Enhancement of noradrenaline release by 12–0-tetradecanoyl-phorbol-13-acetate, an activator of protein kinase C. Eur. J. Pharmacol. 129:389–392.Google Scholar
  5. Allgaier C, Hertting G, Von Kugelgen O (1987a) The adenosine receptor-mediated inhibition of noradrenaline release possibly involves a N-protein and is increased by a2-autoreceptor blockade. Br. J. Pharmacol. 90:40–3412.Google Scholar
  6. Allgaier C, Daschmann B, Huang H, Hertting G (1987b) Protein kinase C and presynaptic modulation of acetylcholine release in rabbit hippocampus. Brit. J. Pharmacol. (in press).Google Scholar
  7. Allgaier C, Hertting G, Huang HY, Jackisch R (1987c) Protein kinase C activation and α2-autoreceptor-modulated release of noradrenaline. Br. J. Pharmacol. 92:161–172.PubMedGoogle Scholar
  8. Berridge MJ (1984) Inositol trisphosphate and diacylglycerol second messengers. Biochem. J. 220:345–360.PubMedGoogle Scholar
  9. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257:7847–7851.Google Scholar
  10. Cooper DMF (1982) Bimodal regulation of adenylate cyclase FEBS Lett. 138:157–163.CrossRefGoogle Scholar
  11. Feuerstein TJ, Allgaier C, Hertting G (1987) Possible involve- of protein kinase C (PKC) in the regulation of electrically evoked serotonin (5-HT) release from rabbit hippocampal slices. Eur. J. Pharmacol. 139:267–272.Google Scholar
  12. Fredholm BB, Jonzon B, Lindgren E (1983) Inhibition of noradrenaline release from hippocampal slices by a stable adenosine analogue. Acta Physiol. Scand. 515:7–10.Google Scholar
  13. Fredholm BB, Lindgren E (1986) Possible involvement of the Ni-protein in the prejunctional inhibitory effect of a stable adenosine analogue (R-PIA) on noradrenaline release in the rat hippocampus. Acta Physiol. Scand. 126:307–309.Google Scholar
  14. Fredholm BB, Lindgren E (1987) Effects of N-ethylmaleimide and forskolin on noradrenaline release from rat hippocampal slices. Evidence that prejunctional adenosine and a-recep- tors are linked to N-proteins but not to adenylate cyclase. Acta Physiol. Scand. 130:95–105.Google Scholar
  15. Hertting G, Zumstein A, Jackisch R, Hoffmann I, Starke K (1980) Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Naunyn- Schmiedeberg’s Arch. Pharmacol. 315:111–117.Google Scholar
  16. Hertting G, Feuerstein TJ, Jackisch R, Allgaier C (1986) Possible involvement of the Ni protein of adenylate cyclase in the autoreceptor-mediated modulation of the evoked noradrenaline release. Sixth General Meeting of the European Society for Neurochemistry in Parague. Molecular Basis of Neural Function ed. by S. Tucek, S. Stipek, F. Stastny, J. Krivanek pp. 219.Google Scholar
  17. Jackisch R, Werle E, Hertting G (1984) Identification of mechanisms involved in the modulation of release of noradrenaline in the hippocampus of the rabbit in vitro. Neurophamacol. 23:1363–1371.CrossRefGoogle Scholar
  18. Jackisch R, Fehr R, Hertting G (1985) Adenosine: an endogenous modulator of hippocampal noradrenaline release. 24:499–507.Google Scholar
  19. Jakobs KH, Aktories K, Schultz G (1984) Mechanisms and components involved in adenylate cyclase inhibition by hormones. Adv. Cyclic Nucleotide Res. 17:135–143.Google Scholar
  20. Jakobs KH, Bauer S, Watanabe Y (1985) Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway. Eur. J. Biochem. 151:425–430.Google Scholar
  21. Johnston H, Majewski H, Musgrave IF (1987) Involvement of cyclic nucleotides in prejunctional modulation of noradrenaline release in mouse atria. Br. J. Pharmacol. 91:773–781.Google Scholar
  22. Katada T, Oinuma M, Kusakabe K, Ui M (1987) A new GTP-binding protein in brain tissues serving as the specific substrate of islet-activating protein, pertussis toxin. FEBS Lett. 213:353–358.PubMedCrossRefGoogle Scholar
  23. Kawamoto S, Hidaka H (1984) 1-(5-Isoquinolinesulfonyl)-2-me thylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochem. Biophys. Res. Commun. 125:258.Google Scholar
  24. Kuo JF, Raynor L, Mazzei GJ, Schatzman RC, Turner RS, Kern WR (1983) Cobra polypeptide cytotoxin I and marine worm polypeptide cytotoxin A-IV are potent and selective inhibitors of phospholipid-sensitive Ca2+-dependent protein kinase. FEBS Lett. 153:183–186.PubMedCrossRefGoogle Scholar
  25. Kawai Y, Whitsel C, Arinze IJ (1986) NADP+enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins. J. Cyclic Nucleotide Res. 11:265–274.Google Scholar
  26. Laemmli CK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685.PubMedCrossRefGoogle Scholar
  27. Limberger N, Späth L, Hölting T, Starke K (1986) Mutual interaction between presynaptic 0C2 -adrenoceptors and opioid-receptors at the noradrenergic axons of rabbit brain cortex. Naunyn-Schmiedebergs’s Arch. Pharmacol. 334:166–171.Google Scholar
  28. Marchi M, Paudice P, Raiteri M (1981) Autoregulation of acetyl choline release in isolated hippocampal nerve endings. Eur. J. Pharmacol. 73:75–79.Google Scholar
  29. Mulder AH, Frankhuyzen AL, Stoof JC, Werner J, Schoffelmeer (1984) Catecholamine receptors, opiate receptors, and presynaptic modulation of neurotransmitter release in the brain. Catecholamines: Neuropharmacol. and Central Nervous System - Theoretical Aspects, Alan R Liss, Inc., New York, pp. 47–58Google Scholar
  30. Murayama T, Ui M (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP-ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258:3319–3326.Google Scholar
  31. Nichols RA, Haycock JW, Wang JKT, Greengard P (1987) Phorbolester enhancement of neurotransmitter release from rat brain synaptosomes. J. Neurochem. 48:615–621.PubMedCrossRefGoogle Scholar
  32. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698.PubMedCrossRefGoogle Scholar
  33. Nordstrom O, Bartfai T (1981) 8-Br-cyclic GMP mimics activation of muscarinic autoreceptor and inhibits acetylcholine release from rat hippocampal slices. Brain Res. 213:467–471.PubMedCrossRefGoogle Scholar
  34. Pedata F, Giovannelli L, De Sarno P,Pepeu G (1986) Effect of adenosine, adenosine derivatives, and caffeine on acetylcholine release from brain synaptosomes: Interaction with muscarinic autoregulatory mechanisms. J. Neurochem. 46:1593–1598.Google Scholar
  35. Richardson IW, Szerb JC (1974) The release of labelledacetylcholine and choline from cerebral cortical slices stimulated electrically. Br. J. Pharmacol. 52:499–507.Google Scholar
  36. Robinson PJ, Lovenberg W (1986) Dopamine and serotonin in two populations of synaptosomes isolated by percoll gradient centrifugation. Neurochem. Int. 9:455–458.Google Scholar
  37. Rodbell M (1980) The role of hormone receptors and GTP-regula- proteins in membrane transduction. Nat. 284:17–22.CrossRefGoogle Scholar
  38. Schoffelmeer ANM, Mulder AH (1983) 3H-Noradrenaline release rat neocortical slices in the absence of extracellular Ca2+ and its presynaptic alpha2-adrenergic modulation. A study on the possible role of cyclic AMP. Naunyn-Schmiederberg1s Arch. Pharmacol. 323:188–192.CrossRefGoogle Scholar
  39. Starke K (1987) Presynaptic a-autoreceptors. Rev. Physiol. Biochem. Pharmacol. 107: 73–146.PubMedCrossRefGoogle Scholar
  40. Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259:13806–13813.Google Scholar
  41. Strittmatter H, Jackisch R, Hertting G (1982) Role of dopamine receptors in the modulation of acetylcholine release in the rabbit hippocampus. Naunyn-Schmiedebergs Arch Pharmacol. 321:195–200.CrossRefGoogle Scholar
  42. Tanaka C, Fujiwara H, Fujii Y (1986) Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium. FEBS Lett. 195:129–134.PubMedCrossRefGoogle Scholar
  43. Versteeg DHG, Florijn WJ (1987) Phorbol 12,13-dibutyrate enhances electrically stimulated neuromessenger release from rat dorsal hippocampal slices in vitro. Life Sci. 40:1237–1243.PubMedCrossRefGoogle Scholar
  44. Versteeg DHG, Ulenkate HJLM (1987) Basal and electrically stimulated release of [3H]dopamine from rat amygdala slices in vitro: effects of 4p-phorbol 12,13-dibutyrate, 4a-phorbol 12,13-didecanoate and polymyxin B. Brain Res. 416:343–348.PubMedCrossRefGoogle Scholar
  45. Wakade AR, Malhotra RK, Wakade TD (1985) Phorbol ester, an activator of protein kinase C, enhances calcium-dependent release of sympathetic neurotransmitter. Naunyn-Schmiede- berg’s Arch Pharmacol. 331:122–124.CrossRefGoogle Scholar
  46. Wakade AR, Malhotra RK, Wakade TD (1986) Phorbol ester facilitates 45 Ca accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla. Nature 321–698–700.PubMedCrossRefGoogle Scholar
  47. Wang HY, Friedman E (1987) Protein kinase C: regulation of serotonin release from rat brain cortical slices. Eur. J. Pharmacol. 141:15–21.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Hertting
    • 1
  • S. Wurster
    • 1
  • P. Gebicke-Härter
    • 1
  • C. Allgaier
    • 1
  1. 1.Institute of PharmacologyUniversity of FreiburgFreiburgFederal Republic of Germany

Personalised recommendations