Skip to main content

New Aspects on Modulation Of Sympathetic Neurotransmission: by Change of Probability of Secretion of Single Mixed Quanta From Two Classes of Nerve Varicosities

  • Conference paper
Modulation of Synaptic Transmission and Plasticity in Nervous Systems

Part of the book series: NATO ASI Series ((ASIH,volume 19))

Abstract

Exciting new findings in many areas force us to change radically our views on sympathetic neurotransmission. The purpose of this short review is to suggest some features of an emerging new working model, and to discuss in that context the basic secretory characteristics of individual nerve varicosities, and the transmission of impulses in some sympathetic neuro-effector junctions, and its pre- and postjunctional modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK (1981) Regulation of central noradrenergic cell firing: Role of α2-adrenoceptors and opiate receptors. In: Stjärne L, Hedqvist P, Lagercrantz H and Wennmalm Å (eds). Chemical Neurotransmission 75 years. Academic Press, London: 273–284.

    Google Scholar 

  • Alberts P, Bartfai T and Stjärne L (1981) Site(s) and ionic basis of a-autoinhibition and facilitation of [3H]noradrenaline secretion in guinea-pig vas deferens. J Physiol (Lond) 312: 297–334.

    CAS  Google Scholar 

  • Bartschat DK and Blaustein MP (1985) Potassium channels in isolated presynaptic nerveterminals from rat brain. J Physiol (LoncJ) 361: 419–440.

    CAS  Google Scholar 

  • Bennett MR (1973) Structure and electrical properties of the autonomic neuromuscular junction. Phil Trans R Soc Lond B 265: 25–34.

    Article  CAS  Google Scholar 

  • Bevan JA, Bevan RD and Duckies SP (1980) Adrenergic regulation of vascular smooth muscle. In: Bohr DF, Somlyo AP and Sparks HV (eds). Handbook of Physiology 2, The Cardiovascular System, Vol. 2, Vascular Smooth Muscle. Amer Physiol Soc, Baltimore: 515–566.

    Google Scholar 

  • Bevan JA, Tayo FM, Rowan RA and Bevan RD (1984) Presynaptic a-receptor control of adrenergic transmitter release in blood vessels. Fed Proc 43; 1365–1370.

    PubMed  CAS  Google Scholar 

  • Blakeley AGH and Cunnane TC (1979) The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: An electrophysiological study. J Physiol (Lond) 296: 85–96.

    CAS  Google Scholar 

  • Blakeley AGH, Mathie A and Petersen SA (1984) Facilitation at single release sites of a sympathetic neuroeffector junction in the mouse. J Physiol (Lond) 349: 57–71.

    CAS  Google Scholar 

  • Blakeley AGH, Mathie A and Petersen SA (1986) Interactions between the effects of yohimbine, clonidine and [Ca]0 on the electrical response of the mouse vas deferens. Br J Pharmacol 88: 807–814.

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Nachshen DA and Drapeau P (1981) Excitation-secretion coupling: The role of calcium. In: Stjarne L, Hedqvist P, Lagercrantz H and Wennmalm A (eds). Chemical Neurotransmission 75 years. Academic Press, London: 125–138.

    Google Scholar 

  • Bolton TB and Large WA (1986) Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves. Quart J Exp Physiol 71: 1–28.

    CAS  Google Scholar 

  • Brigant JL and Mallart A (1982) Presynaptic currents in mouse motor endings. J Physiol (Lond) 333: 619–636.

    CAS  Google Scholar 

  • Brock JA and Cunnane TC (1987) Relation between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature 326: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126: 67–91.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G and Costa M (1975) Adrenergic Neurons. Chapman and Hall, London.

    Google Scholar 

  • Burnstock G and Holman ME (1966) Junction potentials at adrenergic synapses. Pharmacol Rev 18: 481–493.

    PubMed  CAS  Google Scholar 

  • Changeux J-P (1986) Coexistence of neuronal messengers and molecular selection. Prog Brain Res 68: 373–403.

    Article  PubMed  CAS  Google Scholar 

  • Cheung DW (1982) Two components in the cellular response of rat tail arteries to nerve stimulation. J Physiol (Lond) 328: 461–468.

    CAS  Google Scholar 

  • Cunnane TC (1984) The mechanism of neurotransmitter release from sympathetic nerves. Trends in Neurosci 7: 248–253.

    Article  Google Scholar 

  • Cunnane TC and Stjarne L (1984) Transmitter secretion from individual varicosities of guinea-pig and mouse vas deferens: Highly intermittent and monoquantal. Neuroscience 13: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Dale HH (1934) Nomenclature of fibres in the autonomic system and their effects. J Physiol (Lond) 80: 10–11.

    Google Scholar 

  • Dunant Y and Muller D (1986) Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction. J Physiol (Lond) 379: 461–478.

    CAS  Google Scholar 

  • Eccles JC (1986) Chemical transmission and Dale’s principle. Prog Brain Res 68: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Fedan JS, Hogaboom GK, O’Donnell JP, Colby J and Westfall DP (1981) Contribution by purines to the neurogenic response of the vas deferens of the guinea pig. Eur J Pharmacol 69: 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Folkow B, Haggendal J and Lisander B (1967) Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta Physiol Scand Suppl 307: 1–38.

    PubMed  CAS  Google Scholar 

  • Folkow B and Haggendal J (1970) Some aspects of the quantal release of the adrenergic transmitter. Bayer-Symposium II. Springer, Berlin: 91–97.

    Google Scholar 

  • Furness JB (1970) The excitatory input to a single smooth muscle cell. Pflugers Arch 314: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Haefely W (1972) Electrophysiology of the adrenergic neuron. In: Blaschko H and Muscholl E (eds). Catecholamines. Handbook of Experimental Pharmacology, Vol. 33. Springer, Berlin: 661–725.

    Google Scholar 

  • Hille B (1984) Ionic Channels of Excitable Membranes. Sinauer Associates Inc. Publishers, Sunderland Massachusetts.

    Google Scholar 

  • Hdkfelt T (1969) Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta Physiol Scand 76: 427–440.

    Article  Google Scholar 

  • HSkfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Bjorklund H, Olson L, Lindh B, Elfvin L-G, Lundberg JM, Lindgren jA, Samuelsson B, Pernow B, Terenius L, Post C, Everitt B and Goldstein M (1986) Coexistence of neuronal messengers an overview. Prog Brain Res 68: 33–70.

    Article  Google Scholar 

  • Illes P, Meier C and Starke K (1984) Tetrodotoxin-resistant release of 3H-noradrenaline from the mouse vas deferens by high intensity electrical stimulation. Neuroscience 11: 715–721.

    Article  PubMed  CAS  Google Scholar 

  • Kirpekar SM (1975) Factors influencing transmission at adrenergic synapses. Prog Neurobiol 4: 163–210.

    Article  Google Scholar 

  • Kirpekar SM and Prat JC (1978) Effect of tetraethylammonium on noradrenaline release from cat spleen treated with tetrodotoxin. Nature 276: 623–624.

    Article  PubMed  CAS  Google Scholar 

  • Klein RL (1982) Chemical composition of the large noradrenergic vesicles. In: Klein RL, Lagercrantz H and Zimmermann H (eds). Neurotransmitter Vesicles. Academic Press, London: 133–150.

    Google Scholar 

  • Korn H (1984) What central inhibitory pathways tell us about mechanisms of transmitter release. Exp Brain Res Suppl 9: 201–224.

    Article  Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60: 481–497.

    PubMed  CAS  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmac Rev 32: 337–362.

    Google Scholar 

  • Llinás R, Izcak Z, Steinberg and Walton K (1976) Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci USA 73: 2918–2922.

    Article  PubMed  Google Scholar 

  • Lundberg JM and HGkfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons functional and pharmacological implications. Prog Brain Res 68: 241–262.

    Article  PubMed  CAS  Google Scholar 

  • Mallart A (1984) Presynaptic currents in frog motor endings. Pflugers Arch 400: 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Neild TO (1987) Actions of neuropeptide Y on innervated and denervated rat tail arteries. J Physiol (Lond) 386: 19–30.

    CAS  Google Scholar 

  • North RA (1986) Receptors on individual neurones. Neuroscience 17: 899–907.

    Article  PubMed  CAS  Google Scholar 

  • North RA and Yoshimura M (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol (Lond) 349: 43–55.

    CAS  Google Scholar 

  • Potter DD, Matsumoto SG, Landis SC, Sah DWY and Furshpan EJ (1986) Transmitter status in cultured sympathetic principal neurons: plasticity, graded expression and diversity. Prog Brain Res 68: 103–120.

    Article  PubMed  CAS  Google Scholar 

  • Schipper J, Tilders FJH and Ploem JS (1980) A scanning microfluorimetric study on sympathetic nerve fibres: Intraneuronal differences in noradrenaline turnover. Brain Res 190: 459–472.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon P and Burnstock G (1984) Inhibition of excitatory junction potentials in guinea- pig vas deferens by a, p-methylene-ATP: Further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol 100: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon P and Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol (Lond) 347: 561–580.

    CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124.

    Article  PubMed  CAS  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Ann Rev Phamacol Toxicol 21: 7–30.

    Article  CAS  Google Scholar 

  • Starke K (1987) Presynaptic a-autoreceptors. Rev Physiol Biochem Pharmacol 107: 73–146.

    Article  PubMed  CAS  Google Scholar 

  • Stjarne L (1975) Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In: Iversen LL, Iversen SD and Snyder SH (eds) Handbook of Psychopharmacology. Vol. 6. Plenum Press, New York: 179–233.

    Google Scholar 

  • Stjarne L (1978) Facilitation and receptor-mediated regulation of noradrenaline secretion by control of recruitment of varicosities as well as by control of electro-secretory coupling. Neuroscience 3: 1147–1155.

    Article  PubMed  CAS  Google Scholar 

  • Stjarne L (1979) Presynaptic a-receptors do not depress the secretion of 3H-noradrenaline induced by veratridine. Acta Physiol Scand 106: 379–380.

    Article  PubMed  CAS  Google Scholar 

  • Stjarne L (1981) On sites and mechanisms of presynaptic control of noradrenaline secretion. In: Stjarne L, Hedqvist P, Lagercrantz H and Wennmalm A (eds). Chemical Neurotransmission 75 years. Academic Press, London: 257–272.

    Google Scholar 

  • Stjarne L (1985) Scope and mechanisms of control of stimulus-secretion coupling in single varicosities of sympathetic nerves. Clinical Science 68: (Suppl. 10), 77s–81s.

    Google Scholar 

  • Stjärne L (1986a) New paradigm: Sympathetic neurotransmission by lateral interaction between secretory units? News in Physiological Sciences 1: 103–106.

    Google Scholar 

  • Stjarne L (1986b) New paradigm: sympathetic transmission by multiple messengers and lateral interaction between monoquantal release sites? Trends in Neurosci 9: 547–548.

    Article  Google Scholar 

  • Stjärne L (1987) New paradigm: A digital model of feedback regulation of sympathetic neurotransmitter secretion. In: Vanhoutte PM (ed) Proc Symp “Mechanisms of Vasodilatation, Rochester, Minnesota. Raven Press. In press.

    Google Scholar 

  • Stjärne L and Lundberg JM (1986) On the possible roles of noradrenaline, adenosine 5-triphosphate and neuropeptide Y as sympathetic cotransmitters in the mouse vas deferens. Prog Brain Res 68: 263–278.

    Article  PubMed  Google Scholar 

  • Stjärne L and Astrand P (1984) Discrete events measure single quanta of adenosine S’-triphosphate secreted from sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 13: 21–28.

    Article  PubMed  Google Scholar 

  • Stjärne L and Astrand P (1985a) Relative pre- and postjunctional roles of noradrenaline and adenosine 5’-triphosphate as neurotransmitters of the sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 14: 929–946.

    Article  PubMed  Google Scholar 

  • Stjärne L and Astrand P (1985b) Site of action of presynaptic inhibition mediated via adrenoceptors. In: Szabadi E, Bradshaw CM and Nahorski SR (eds). Pharmacology of Adrenoceptors. Macmillan: 157–166.

    Google Scholar 

  • Stjärne L, Lundberg JM and Astrand P (1986) Neuropeptide Y––A cotransmitter with noradrenaline and adenosine 5’-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electropharmacological study. Neuroscience 18: 151–166.

    Article  PubMed  Google Scholar 

  • Suzuki H (1983) An electrophysiological study of excitatory neuromuscular transmission in the guinea-pig main pulmonary artery. J Physiol (Lond) 336: 47–59.

    CAS  Google Scholar 

  • Thesleff S (1980) Aminopyridines and synaptic transmission. Neuroscience 5: 1413–1419.

    Article  PubMed  CAS  Google Scholar 

  • Thoa NB, Wooten GF, Axelrod J and Kopin IJ (1973) On the mechanism of release of norepinephrine from sympathetic nerves induced by depolarizing agents and sympatomimetic drugs. Mol Pharmacol 11: 10–18.

    Google Scholar 

  • Thuresson-Klein A (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10: 245–252.

    Article  Google Scholar 

  • Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Prog Neurobiol 12: 181–290.

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57: 659–728.

    PubMed  CAS  Google Scholar 

  • Zhu PC, Thuresson-Klein A and Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: A possible mechanism for neuropeptide release. Neuroscience 19: 43–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stjärne, L., Tanaka, E., Århem, P. (1988). New Aspects on Modulation Of Sympathetic Neurotransmission: by Change of Probability of Secretion of Single Mixed Quanta From Two Classes of Nerve Varicosities. In: Hertting, G., Spatz, HC. (eds) Modulation of Synaptic Transmission and Plasticity in Nervous Systems. NATO ASI Series, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73160-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73160-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73162-4

  • Online ISBN: 978-3-642-73160-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics