Luminescent Bacteria: Symbionts of Nematodes Am) Pathogens of Insects

  • K. Nealson
  • T. M. Schmidt
  • B. Bleakley
Part of the NATO ASI Series book series (volume 17)

Abstract

Luminous bacteria are a well-known group of (primarily marine) bacteria that are ecologically quite diverse (Nealson and Hastings, 1979). They participate in a wide variety of symbioses, including loose associations as gut symbionts, species-specific associations as extracellular symbionts of light organs of marine fishes and squids, and intracellular associations as symbionts of luminous tunicates (Nealson et al., 1981). Some examples of these associations are shown in Table 1.

Keywords

Carbohydrate Lipase Aldehyde Vibrio Anthraquinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhab dus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303–309.Google Scholar
  2. Akhurst, R.J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria sym biotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128: 3061–3065.PubMedGoogle Scholar
  3. Bassot, J.M. 1975. Les organes lumineux a bacteries symbiotiques de quelques teleosteens Leiognathides. Arch. Zool. Exp. Gen. 116: 359–373.Google Scholar
  4. Bird, A.F., Akhurst, R.J. 1983. The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int. J. Parasit. 13: 599–606.CrossRefGoogle Scholar
  5. Bleakly, B., Nealson, K.H. 1987. Characterization of primary and secondary forms of Xenorhabdus luminescens: Growth, luminescence, and secondary metabolite production in defined media. J. Bacteriol. (in press).Google Scholar
  6. Boemare, N., Louis, C., Kuhl, G. 1982. Etude ultrastructurale des cristaux chez Xenorhabdus spp., bacteries infeodees aux nematodes entomophages Steinernematidae et Heterorhabditidae. C.R. Soc. Biol. 177: 107–115.Google Scholar
  7. Bowen, D., Ensign, J.C. 1987. Intracellular protein crystal of the insect pathogen Xenorhabdus luminescens. Proc. Amer. Soc. Microbiol. p. 183 (abstract).Google Scholar
  8. Couche, G.A., Gregson, R.P. 1986. Metabolites produced during in vitro growth of Xenorhabdus sp. Proc. Int. Conf. Insect. Parasitol. Netherlands (abstract).Google Scholar
  9. Couche, G.A., Gregson, R.P. 1987. Protein inclusions produced by the ento-mopathogenic bacterium, Xenorhabdus nematophilus subsp. nematophilus. J. Bacteriol. (in press).Google Scholar
  10. Dunlap, P.V. 1984. The ecology and physiology of the light organ symbiosis between Photobacterium leiognathi and ponyfishes. PhD Thesis, Univ. Cal. Los Angeles, CA.Google Scholar
  11. Dunlap, P.V. 1985. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch. Microbiol. 141: 44–50.Google Scholar
  12. Dunphy, G.B., Rutherford, T.A., Webster, J.M. 1985. Growth and virulence of Steinernema glaseri influenced by different subspecies of Xenorhabdus nematophilus. J. Nematol. 17: 476–482.PubMedGoogle Scholar
  13. Gaugier, R. 1981. Biological control potential of neoaplectanid nematodes. J. Nematol. 13: 241–249.Google Scholar
  14. Grimont, P.A., Steigerwalt, A.G., Boemare, N., Hickman-Brenner, F.W., Deval, C., Grimont, F., Brenner, D.J. 1984. Deoxyribonucleic acid relatedness and phenotypic study of the genus Xenorhabdus. Int. J. Syst. Bacteriol. 34: 378–388.CrossRefGoogle Scholar
  15. Haygood, M.G., Nealson, K.H. 1985. Mechanisms of iron regulation of luminescence in Vibrio fischeri. J. Bacteriol. 162: 209–216.PubMedGoogle Scholar
  16. Haygood, M.G., Nealson, K.H. 1985. The effect of iron of the growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis 1: 39–51.Google Scholar
  17. Haygood, M.G., Tebo, B., Nealson, K.H. 1984. Luminous bacteria of a monocen trid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepha-ron palpebratus and Kryptophanaron alfredi): Population sizes and growth within the light organs, and rates of release into the seawater. Mar. Biol. 75: 249–254.CrossRefGoogle Scholar
  18. Kessel, M. 1978. The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiologie Z. Exp. Zeilforsch. 15: 145–158.Google Scholar
  19. Kopecky, Nealson, K.H. 1984. Cross reaction of luciferase subunits from different species of bacteria. Proc. Amer. Soc. Microbiol. (abstract).Google Scholar
  20. Makemson, J., Hastings, J.W. 1982. Iron represses bioluminescence and affects catabolite repression of luminescence in Vibrio harveyi. Curr. Microbiol. 7: 181–186.CrossRefGoogle Scholar
  21. McFall-Ngai, M.J. 1983. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae) J. Expt. Zool. 227: 23–33.CrossRefGoogle Scholar
  22. McFall-Ngai, M.J., Dunlap, P. 1963. Three new modes of luminescence in the leiognathid fish Gazza minuta: Discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73: 227–237.CrossRefGoogle Scholar
  23. Meighen, E., Bartlet, I. 1980. Complementation of subunits from different bacterial luciferases. J. Biol. Chem. 255: 1181–1187.Google Scholar
  24. Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomagenous nematodes Steinernema feltiae and Heterorhabditis bac-teriophora. Can. Ent. 117: 401–407.CrossRefGoogle Scholar
  25. Nealson, K.H. 1977. Autoinduction of bacterial luciferase: Occurrence, mechanism and significance. Arch. Microbiol. 112: 73–79.PubMedCrossRefGoogle Scholar
  26. Nealson, K.H. 1979. Alternative strategies of symbiosis of marine luminous fishes harboring light emitting bacteria. Trends Biochem. Sci. 4: 105–110.CrossRefGoogle Scholar
  27. Nealson, K.H., Hastings, J.W. 1977. Low oxygen is optimal for luciferase synthesis in some bacteria: Ecological implications. Arch. Microbiol. 112: 9–16.PubMedCrossRefGoogle Scholar
  28. Nealson, K.H., Hastings, J.W. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43: 496–518.PubMedGoogle Scholar
  29. Nealson, K.H., Eberhard, A., Hastings, J.W. 1972. Catabolite repression of bacterial bioluminescence: Functional implications. Proc. Nat. Acad. Sci. (USA) 59: 1073–1076.CrossRefGoogle Scholar
  30. Nealson, K.H., Cohn, D., Leisman, G., Tebo, B. 1981. Coevolution of luminous bacteria and their eukaryotic hosts. N.Y. Acad. Sci. 361: 76–91.CrossRefGoogle Scholar
  31. Paul, V.J., Frautschy, S., Fenical, W., Nealson, K.H. 1981. Antibiotics in microbial ecology: Isolation and structure assignment of several new antibacterial compounds for the insect-symbiotic bacteria Xenorhabdus spp. J. Chem. Ecol. 7: 589–597.CrossRefGoogle Scholar
  32. Poinar, G.O. 1966. The presence of Achromobacter nematophilus in the infective stage of a Neoplectana sp. (Steinernematidae: Nematoda). Nemagolo-gica 12: 105–108.Google Scholar
  33. Poinar, G.O., Thomas, G.M. 1966. Significance of Achromobacter nematophilus Poinar & Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode, DD136 (Neoplectana sp. Steinernematidae). Parasitol. 56: 385–390.CrossRefGoogle Scholar
  34. Poinar, G.O., Thomas, G.M. 1967. The nature of Achromobacter nematophilus as an insect pathogen. J. Invert. Pathol. 9: 510–514.CrossRefGoogle Scholar
  35. Poinar, G.O. Jr., Thomas, G., Haygood, M., Nealson, K.H. 1980. Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode, Heterorhabditis bacteriophora. Soil Biol. Biochem. 12: 5–10.CrossRefGoogle Scholar
  36. Richardson, W.H., Schmidt, T.M., Nealson, K.H. 1987. Secondary metabolite production by Xenorhabdus luminescens. J. Bacteriol. (in press).Google Scholar
  37. Ruby, E.G., Hastings, J.W. 1980. Formation of hybrid luciferases from subu-nits of different species of Photobacterium. Biochem. 19: 4989–4993.CrossRefGoogle Scholar
  38. Schmidt, T.M., Nealson, K.H. 1987. Regulation of bioluminescence and proper ties of luciferase from Xenorhabdus luminescens. J. Bacteriol. (in press).Google Scholar
  39. Schmidt, T.M., Bleakley, B., Nealson, K.H. 1987. Purification and characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens. J. Gen. Microbiol. (in press).Google Scholar
  40. Silverman, M., Simon, M. 1983. Phase Variation and Related Systems (J.A. Shapiro, Ed.) Academic Press, N.Y.Google Scholar
  41. Tebo, B.M., Linthicum, D.S., Nealson, K.H. 1979. Luminous bacteria and light emitting fish: Ultrastructure of the symbiosis. BioSystems 11: 169–180.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Nealson
    • 1
  • T. M. Schmidt
    • 1
  • B. Bleakley
    • 1
  1. 1.Center for Great Lakes StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations