Peptide and Carbohydrate Moieties as Molecular Signals in Animal Cell Recognition

  • M. Monsigny
  • A. C. Roche
  • C. Kieda
  • R. Mayer
  • P. Midoux
Conference paper
Part of the NATO ASI Series book series (volume 17)


Cell to cell and to substratum interactions are usually mediated by specific ligands and receptors. During the last decade, various cell surface receptors were evidenced, they include carbohydrate binding and peptide binding proteins. Cell surface carbohydrate specific receptors may be lectins (Goldstein et al, 1980), ectoglycosyltransferases or glycosidases. Glycolipids, glycoproteins and proteoglycans have been shown to interact with lectins on the surface of a large number of animal cells as well as parasites, bacteria and viruses (for reviews, see Monsigny et al, 1979, 1983, 1984 a, Monsigny 1984, Ashwell and Harford 1982, Liener et al, 1986, Lis and Sharon 1986, Mirelman, 1986, Sharon, 1984). Conversely, a given cell expresses on its surface a set of specific glycoconjugates which may be involved in recognition mechanisms. These glycoconjugates include glycolipids, glycoproteins and glycosaminoglycans (see Schrével et al., 1981 for a review on the cytochemistry of cell surface glycoconjugates). Their biosynthesis involves a number of different glycosyltransferases, glycosidases and/or epimerases and sulfotransferases. The nature and the number of the glycoconjugates are modulated depending on the type, on the maturation or on the transformation state of cells.


Cell Recognition Specific Lectin Endogenous Lectin Cell Surface Glycoconjugates Flow Cytofluorometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alquier, C., Miquelis, R. and Monsigny, M. (1987), Direct fluorescence localization of an endogenous N-acetylglucosamine specific lectin in the Thyroid gland. Histochem. (submitted).Google Scholar
  2. Ashwell, G. and Harford, J. (1982), Carbohydrate specific receptors of the liver. Ann. Rev. Biochem., 5.1: 531–534.CrossRefGoogle Scholar
  3. Barzilay, M., Monsigny, M. and Sharon, N. (1982), Interaction of soybean agglutinin with human peripheral blood lymphocyte subpopulations: evidence for the existence of a lectin-like substance on the lymphocyte surface. In Lectins Biology, Biochemistry, Chimical Biochimistry, Walter de Gruyter and Co, Berlin, Vol. 2, 67–81.Google Scholar
  4. Butcher, E.C. (1986), The regulation of lymphocyte traffic Current Topics in Microbiol Immunol, 28: 85–122.Google Scholar
  5. Cunningham, B.A. (1986) Cell adhesion molecules: a new perspective on molecular embyology. Trends in Biochemical Science, 11: 423–426.CrossRefGoogle Scholar
  6. Dennis, J.W. and Laferte (1987), Tumor cell surface carbohydrate and the metastatic phenotype. Cancer Metast. Rev., 5: 185–204.CrossRefGoogle Scholar
  7. Dufour, S., Duband, J.L. and Thiery, J.P. (1987), Role of a major cell substratum adhesion system in cell behavior and morphogenesis. Biol. Cell, 58: 1–14.Google Scholar
  8. Edelman G.M. (1985), Cell adhesion and the molecular processes of morphogenesis. Ann. Rev. Biochem., 54: 135–169.PubMedCrossRefGoogle Scholar
  9. Gabius, H.J., Engelhardt, R. and Cramer, F (1987 a), Endogenous tumor lectins: overview and perspectives. Anticancer Research, in press.Google Scholar
  10. Gabius, H.J., Engelhardt, R., Hellmann, T., Midoux, P., Monsigny, M., Nagel, G.A. and Vehmeyer K. (1987 b), Characterization of membrane lectins in human colon carcinima cells by flow cytofluorometry, drug targeting and affinity chromatography. Anticancer Res., 7: 109–112.PubMedGoogle Scholar
  11. Goldstein, I.J., Hughes, R.C., Monsigny, M., Osawa, T. and Sharon, N. (1980), What should be called a lectin ? Nature, 285: 66.CrossRefGoogle Scholar
  12. Hakomori, S.I. (1981), Glycophinsgolipids in cellular interaction, differentiation and oncogenes. Ann. Rev. Biochem., 50: 733–764.PubMedCrossRefGoogle Scholar
  13. Humphries, M.J., Olden, K. and Yamada, K. (1986), A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 233: 467–470.PubMedCrossRefGoogle Scholar
  14. Hynes, R.O. (1987), Integrins: a family of cell surface receptors. Cell, 48: 549–554.PubMedCrossRefGoogle Scholar
  15. Jakalnen, S., Reichert, R.A., Gallatin, W.M., Weissman, I.L. and Butcher, E.C. (1986), Homing receptors and the control of lymphocyte migration. Immunological Reviews, 91: 39–60.CrossRefGoogle Scholar
  16. Kieda, C., Bowles, D.J., Ravid, A. and Sharon, N. (1978), Lectins in lymphocyte membranes. FEBS Lett., 94: 391–396.PubMedCrossRefGoogle Scholar
  17. Kieda, C. and Monsigny, M. (1983), The adhesion of mouse spleen cells to lymph node veinules involves endogenous membrane lectins (sugar receptors) of the lymphocytes. In Intercellular communication in Leucocyte J.W Parker and R.L. O’Brien ed., John Wiley and sons, 649–652.Google Scholar
  18. Kieda, C. and Monsigny, M. (1986), Involvement of membrane sugar receptors and membrane glycoconjugates in the adhesion of 3LL subpopulations to cultured pulmonary cells. Invas. Metast., 6: 347–366.Google Scholar
  19. Kieda, C., Monsigny, M. and Waxdal, M.J. (1982), Endogenous lectins on human peripheral mononuclear leukocytes. In Lectin Biology, Biochemistry and Chimical Biochemistry. Walter de Gruyter and Co, Berlin, Vol. 3, 427–433.Google Scholar
  20. Kieda, C., Roche, A.C., Delmotte, F. and Monsigny, M. (1979), Lymphocyte membrane lectins. Direct visualization by the use of fluoresceinyl-glycosylated cytochemical markers. FEBS Lett., 99: 329–332.PubMedCrossRefGoogle Scholar
  21. Kolatag (1987), Chimical trials planned for new AIDS drug. Science, 235: 1138–1139.CrossRefGoogle Scholar
  22. Kornfeld, R. and Kornfeld S. (1985), Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem., 54: 631–664.PubMedCrossRefGoogle Scholar
  23. Lee, Y.C. and Lee R.T. (1982), Neoglycoproteins as probes for binding and cellular uptake of glycoconjugates in the glycoconjugates. Horowitz, M.I. and Pigman, W., eds. vol 4, Academic Press, New York, 57–83.Google Scholar
  24. Liener, I.E., Sharon, N. and Goldstein, I. J. eds., (1986) The lectins Properties, fonctions and applications in biology and medicine. Academic Press, New York, pp 600.Google Scholar
  25. Lis, H. and Sharon, N. (1986), Lectins as molecules and as tools. Ann. Rev. Biochem., 55: 35–67.PubMedCrossRefGoogle Scholar
  26. Meromsky, L., Lotan, R. and Raz, A. (1986) Implications of endogenous tumor cell surface lectins as mediators of cellular interaction and lung colonization. Cancer Res., 46: 5270–5275.PubMedGoogle Scholar
  27. Midoux, P., Roche, A.C. and Monsigny M. (1986), Estimation of the degradation of endocytosed material by flow cytofluorometry using two neoglycoproteins containing different number of fluorescein molecules. Biol. Cell, 58: 221–226.PubMedGoogle Scholar
  28. Midoux, P., Roche, A.C. and Monsigny, M. (1987), Quantitation of the binding, uptake and degradation of fluoresceinylated neoglycoproteins by flow cytofluorometry. Cytometry, 8: 327–334.PubMedCrossRefGoogle Scholar
  29. Miquelis, R., Alquier, C. and Monsigny, M. (1987), GlcNAc specific receptor of the thyroid. Binding characteristics, identification and potential role. J. Biol. Chem., in press.Google Scholar
  30. Mirelman, D., ed. (1986), Microbial lectins and agglutinins: Properties and biological activity. Wiley Intercience Pub., J. Wiley, New York, pp 443.Google Scholar
  31. Monsigny, M., ed. (1984) The role of carbohydrates in cell recognition: endogenous lectins. Biol. Cell., 51: 113–294 (special issue).Google Scholar
  32. Monsigny, M., Kiéda, C. and Roche, A.C. (1979), Membrane lectins, Biol. Cell, 86: 289–300.Google Scholar
  33. Monsigny, M., Kieda, C. and Roche, A.C. (1983), Membrane glycoproteins, glycolipids and membrane lectins as recognition signals in normal and malignant cells. Biol. Cell, 47: 95–110.Google Scholar
  34. Monsigny, M., Kiéda, C. and Roche, A.C. (1984 a) Des lectines endogènes dans la reconnaissance cellulaire. in Cellular and pathological aspects of glycoconjugate metabolism. Colloque INSERM-CNRS, INSERM, 126: 357–372.Google Scholar
  35. Monsigny, M., Roche, A.C. and P. Bailly (1984 b). Tumoricidal activation of murine alveolar macrophages by muramyl dipeptide substituted mannosylated serum albumin. Biochem. Biophys. Res. Commun., 121: 579–584.PubMedCrossRefGoogle Scholar
  36. Monsigny, M., Roche, A.C. and Midoux, P. (1984 c) Uptake of neoglycoproteins, via membrane lectin(s) of L1210 cells evidenced by quantitative flow cytofluorometry and drug targeting. Biol. Cell., 51: 187–196.PubMedGoogle Scholar
  37. Montreuil, J. (1982), Glycoproteins. In Comprehensive Biochemistry, A. Neuberger and L.L. M. Van Deenen, eds, Elsevier, Amsterdam 19B Part II, 1–188.Google Scholar
  38. Montreuil, J. (1984) Spatial conformation of glycans and glycoproteins. Biol. Cell, 51: 115–132.PubMedGoogle Scholar
  39. Paietta, E., Stockert, R.J., Morell, A.G., Diehl, V. and Wiernik, P.H. (1986), Lectin activity as a marker for Hodgkin disease cells. Proc. Natl. Acad. Sci., USA, 83: 3451–3456.PubMedCrossRefGoogle Scholar
  40. Parish, C.R., Rylatt, D.B. and Snowden, J.M. (1984), Demonstration of lymphocyte surface lectins that recognize sulphated polysaccharides, J. Cell, Sci., 65: 145–148.Google Scholar
  41. Pert, C.D., Hill, J.M., Ruff, M.R., Berman, R.M., Robey, W.G., Arthur, L.O., Ruscetti, F.W. and Farrar, W.L. (1986) Octapeptides deduced from the neuropeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potentially inhibit human immunodeficency virus receptor binding and T cell invectivity Proc. Natl. Acad. Sci. USA, 83: 9254–9258.CrossRefGoogle Scholar
  42. Pimlott, N. J.G. and Miller, R.G. (1986) The use of tunicamycin to study the role of cell surface oligosaccharides in lymphocyte recognition, J. Immunol. (1986), 137: 2455–2459.PubMedGoogle Scholar
  43. Poole, A.R. (1986), Proteoglycans in health and disease: structures and functions. Biochem. J., 236: 1–14.PubMedGoogle Scholar
  44. Popisil, M., Kubrycht, J., Bezouska, K., Taborsky, O., Novak, M. and Kocourek, J. (1986) Lactosamine type of asialooligosaccharide recognition in NK cytotoxicity. Immunol. Lett, 12: 83–90.CrossRefGoogle Scholar
  45. Powell, L.D., Bause, E., Legier, G., Molyneux, R. and Hart, G.W. (1985) Influence of asparagine linked oligosaccharides on tumor cell recognition in the mixed lymphocyte reaction. J. Immunol., 135: 714–724.PubMedGoogle Scholar
  46. Rauvala, H. and Hakomori, S.I. (1981) Studies on cell adhesion. III The occurence of α-mannosidase at the fibroblast cell surface and its possible role in cell recognition. J. Cell Biol., 88: 149–159.PubMedCrossRefGoogle Scholar
  47. Raz, A., Meromsky, L., Zvibel, I; and Lotan, R. (1987), Tranformation related changes in the expression of endogenous cell lectins. Int. J. Cancer, 39: 353–360.PubMedCrossRefGoogle Scholar
  48. Raz, A. and Lotan, R. (1987), Endogenous galactose-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metast. Rev., 5: in press.Google Scholar
  49. Roche, A.C., Bailly, P. and Monsigny, M. (1985 a), Macrophage activation by MDP bound to neoglycoproteins: Metastasis eradication in mice. Invas. Metast., 5: 218–222.Google Scholar
  50. Roche, A.C., Barzilay, M., Midoux, P., Junqua, S., Sharon, N. and Monsigny, M. (1983), Sugar specific endocytosis of glycoproteins by Lewis lung carcinoma cells. J. Cell. Biochem., 22: 131–140.PubMedCrossRefGoogle Scholar
  51. Roche, A.C., Midoux, P., Bouchard, P. and Monsigny, M. (1985 b) Membrane lectins on human monocytes. Maturation dependent modulation of 6- phosphomannose and mannose receptors. FEBS Lett., 193: 63–68.PubMedCrossRefGoogle Scholar
  52. Roden, L. and Horowitz, M.I. (1982), Structure and biosynthesis of connective tissue proteoglycans. in. The glycoconjugates Horowitz M.I. and Pigman W., eds. vol 2, Academic Press, New York, 3: 85.Google Scholar
  53. Roos, P.H., Hartman, H.J., Schlepper-Schäfer J., Kolb, H. and Kolb-Bachofen, V. (1985), Galactose specific receptors on liver cells: characterization of the purified receptor for macrophages reveals no structural relationship to the hepatocyte receptor. Biochim. Biophys. Acta, 847: 115–121.PubMedCrossRefGoogle Scholar
  54. Rosen, S.D., Singer, M.S., Yednock, T.A. and Stoolman, L.R. (1985) Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science, 228: 1005–1007.PubMedCrossRefGoogle Scholar
  55. Ruff, M.R., Martin, B.M., Ginns, E.I., Farrar, W.L. and Pert, C.B. (1987), CD4 receptor binding peptides that block HIV infectivity cause human monocyte Chemotaxis. Relationship to vasoactive intertinal peptide. FEBS Lett., 271: 17–22.CrossRefGoogle Scholar
  56. Ruoslahti, E. and Pierschbacher, M.D. (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell, 44: 517–518.PubMedCrossRefGoogle Scholar
  57. Schachter, H. (1984) Coordination between enzyme specificity and intracellular compartimentation with control of protein bound oligosaccharide biosynthesis. Biol. Cell., 51: 133–146.PubMedGoogle Scholar
  58. Schrével, J., Gros, D. and Monsigny, M. (1981), Cytochemistry of cell glycoconjugates, Progr. Histochem. Cytochem. Gustav Fischer Verlog, Stuttgart, New York. Vol. 13, n° 2, 1–269.Google Scholar
  59. Schrével, J., Monsigny, M., Mayer, R., Bernard, F., Picard, I., Lawton P. et Grellier, P. (1987), Nouvelle protéase de Plasmodium falciparum anticorps dirigés contre cette protéase, substrats peptidiques spécifiques de la dite protéase et leur utilisation comme médicaments contre le paludisme. French Patent: 87 06785.Google Scholar
  60. Schrével, J., Philippe, M., Bernard, F. and Monsigny, M. (1986) Surface Plasmodium sugar binding components evidenced by fluorescent neoglycoproteins, Biol. Cell, 56: 49–55.PubMedGoogle Scholar
  61. Sharon, N. (1984) Carbohydrates as recognition determinants in phagocytosis and in lectin mediated killing of target cells. Biol. Cell, 51: 239–245.PubMedGoogle Scholar
  62. Shur, B.D. (1982) Cell surface glycosyltransferase activities during normal and mutant (T/T) mesenchyme migration, Dev. Biol., 91: 149–162.PubMedCrossRefGoogle Scholar
  63. Stahl, P.D., Wileman, T.E., Diment, S. and Shepherd, V.L. (1984) Mannose specific oligosaccharide recognition by mononuclear phagocytes Biol. Cell, 51: 215–218.PubMedGoogle Scholar
  64. Stoolman, L.M., Tenforde, T.S. and Rosen, S.D. (1984) Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial vesicles, J. Cell Biol., 99: 1535–1540.PubMedCrossRefGoogle Scholar
  65. Wileman, T.E., Charding, C. and Stahl, P. (1985) Receptor mediated endocytosis, Biochem. J., 232: 1–14.PubMedGoogle Scholar
  66. Wilson, M.E. and Pearson, R.D. (1986) Evidence that Leishinania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism. J. Immunol., 136, 4681–4688.PubMedGoogle Scholar
  67. Yednock, T.A., Stoolman, L.M. and Rosen, S.D. (1987) Phosphomannosyl derivatized beads detect a receptor involved in lymphocyte homing. J. Cell Biol., 104: 713–723.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Monsigny
    • 1
  • A. C. Roche
    • 1
  • C. Kieda
    • 1
  • R. Mayer
    • 1
  • P. Midoux
    • 1
  1. 1.Laboratoire de Biochimie Cellulaire et Moléculaire des Glycoconjugués Centre de Biophysique MoléculaireC.N.R.S. et Université d’OrléansOrleans Cedex 2France

Personalised recommendations