Symbiosis and Evolution: A Brief Guide to Recent Literature

  • Lynn Margulis
  • David Bermudes
Conference paper
Part of the NATO ASI Series book series (volume 17)


We have recently explored the hypothesis that, in certain taxa, hereditary symbiosis is the major mechanism of origin of that taxon. The reader is referred to Taylor, 1983; Margulis and Bermudes, 1985; and Bermudes and Margulis, 1987.


York Academy High Taxon Polyphyletic Origin Microbial Symbiosis Symbiont Acquisition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadjian, V. and S. Paracer, 1986. Symbiosis: An Introduction to Biological Associations. University Press of New England, Hanover, NH.Google Scholar
  2. Bermudes, D., 1987. Distribution and Immunocytochemical Localization of Tubulin-like Proteins in Spirochetes. Ph.D. Thesis, Boston University Graduate Scnool, Boston, MA.Google Scholar
  3. Bermudes, D. and L. Margulis, 1987. Symbiont acquisition as neoseme: origin of species and higher taxa. Symbiosis (in press).Google Scholar
  4. Bermudes, D., L. Margulis, and G. Tzertzinis, 1987a. Pro-karyotic origin of undulipodia: Application of the Panda Principle to the centriole enigma. Annals of the New York Academy of Sciences 503:187–197.PubMedCrossRefGoogle Scholar
  5. Bermudes, D., S.P. Fracek Jr., R.A. Laursen, L. Margulis, R. Obar, and G. Tzertzinis, 1987b. Tubulin-like protein from Spirochaeta baiacaliforniensis. Annals of the New York Academy of Sciences 503:515–527.CrossRefGoogle Scholar
  6. Corliss, J.O., 1986a. Progress in protistology during the first decade following reemergence of the field as a respectable interdisciplinary area in modern biological research. Progress in Protistology 1:11–63.Google Scholar
  7. Corliss, J.O., 1986b. Advances in studies on phylogeny and evolution of protists. Insect Science Applications 7:305–312.Google Scholar
  8. Corliss, J.O., 1987. Protistan phylogeny and eukaryogenesis. International Review of Cytology 100:319–370.PubMedCrossRefGoogle Scholar
  9. Dyer, B.D. and R. Obar (eds.) 1985. The Origin of Eukaryotic Cells. Van Nostrand Reinhold Co., New York.Google Scholar
  10. Fredrick, J.F. (ed.) 1981. Origins and Evolution of Eukaryotic Intracellular Organelles. Annals of the New York Academy of Sciences. Vol. 361.Google Scholar
  11. Gray, M.W., 1983. The bacterial ancestry of plastids and mitochondria. BioScience 33:693–699.Google Scholar
  12. Goldschmidt, R., 1940. The Material Basis of Evolution, Yale University Press, New Haven, pp. 390–393.Google Scholar
  13. Hanson, E.D., 1977. The Origin and Early Evolution of Animals, Wesleyan University Press, Wesleyan, CT.Google Scholar
  14. Jeon, K.W. (ed.) 1983. Intracellular Symbiosis, International Review of Cytology, Supplement 14. Academic Press, New York.Google Scholar
  15. Lee, J.J. and J.F. Fredrick (eds.) 1987. Endocytobiology III. Annals of the New York Academy of Sciences, Vol. 503. Margulis, L., 1981. Symbiosis in Cell Evolution. W.H. Freeman and Co., San Francisco.Google Scholar
  16. Margulis, L. and D. Bermudes, 1985. Symbiosis as a mechanism of evolution: Status of cell symbiosis theory. Symbiosis 1:101–124.PubMedGoogle Scholar
  17. Margulis, L. and D. Sagan, 1986. The Origins of Sex: Three billion years of Genetic Recombination, Yale University Press, New Haven, CT.Google Scholar
  18. Mehos, D.C., 1983. Symbionticism as a Biological Principle: Ivan E. Wallin’s Theory of Organic Evolution. Master of Arts Thesis, Boston University Graduate School., Boston, MA.Google Scholar
  19. Schwemmler, W. and H.E.A. Schenk (eds.) 1980. Endocytobiology: Endosymbiosis and Cell Biology a Synthesis of Recent Research. Walter de Gruyter, New York.Google Scholar
  20. Schwemmler, W. and H.E.A. Schenk (eds.) 1983. Endocytobiology II. Intracellular Space as Oligogenetic Ecosystems. Walter de Gruyter, New York.Google Scholar
  21. Schwemmler, W., 1984. Reconstruction of Cell Evolution: A Periodic System. CRC Press, Boca Raton, FL.Google Scholar
  22. Searcy, D.G., D.B. Stein, and K.B. Searcy, 1981. A mycoplasm-like archaebacterium possibly related to the nucleus and cytoplasm of eukaryotic cells. Annals of the New York Academy of Sciences 361:312–324.PubMedCrossRefGoogle Scholar
  23. Searcy, D.G., 1986. Some features of thermoacidophilic archae-bacteria preadaptive for the evolution of eukaryotic cells. Systemic and Applied Microbiology 7:198–201.CrossRefGoogle Scholar
  24. Searcy, D.G., 1987. Phylogenetic and phenotypic relationships between the eukaryotic nucleo-cytoplasm and thermophilic archaebacteria. Annals of the New York Academy of Sciences 503: (in press).Google Scholar
  25. Smith, D.C. and A.E. Douglas, 1987. The Biology of Symbiosis. Edward Arnold, London.Google Scholar
  26. Soldo, A.T., 1983. The biology of the xenosome, an intracellular symbiont. International Review of Cytology, Supplement 14:79–109.Google Scholar
  27. Szathmary, E., 1987. Early evolution of microtubules and undulipodia. BioSystems 20: (in press).Google Scholar
  28. Taylor, F.J.R., 1983. Some eco-evolutionary aspects of intracellular symbiosis. International Review of Cytology, Supplement 14:3–28.Google Scholar
  29. To, L.P., 1987. Are centrioles semiautonomous? Annals of the New York Academy of Sciences 503–83–91.PubMedCrossRefGoogle Scholar
  30. Wallin, I.E., 1927. Symbionticism and the Origin of Species. Williams and Wilkins Co., Baltimore, MD.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Lynn Margulis
    • 1
  • David Bermudes
    • 1
  1. 1.Biological Science CenterBoston UniversityBostonUSA

Personalised recommendations