Porphyrin-Protein Interaction

  • T. M. A. R. Dubbelman
Conference paper
Part of the NATO ASI Series book series (volume 15)

Abstract

Several proteins are able to bind porphyrins, but because of their function few are interacting specifically. These few proteins are enzymes in the heme biosynthetic pathway and proteins like the so-called Z-protein in the liver. The first enzyme in that pathway that binds a porphyrin-like molecule is uroporphyrinogen synthetase. This enzyme and the enzymes catalyzing the next steps, uroporphyrinogen cosynthetase and uroporphyrinogen decarboxylase are located in the cytoplasm. The last enzymes, coproporphyrinogen oxidase, protoporphyrinogen oxidase and ferrochelatase are located in the mitochondria. Only these last two enzymes are proteins that bind porphyrins. Little is known of the porphyrin binding properties of these enzymes. The Michaelis Menten constants for various porphyrin(ogen)s are summarized in table I.

Keywords

Porphyrin Meso Sulphonate Diacetyl Protoporphyrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camadro J., Chambon H, Jolles J, Labbe P (1986) Purification and properties of coproporphyrinogen oxidase from the yeast S.cerevisiae. Eur.J. Biochem. 156: 579–587Google Scholar
  2. 2.
    Yoshinaga T, Sano S (1980) Coproporhyrinogen oxidase. J.Biol.Chem. 255: 4722–4726Google Scholar
  3. 3.
    Brown SB, Holroyd JA, Vernon DI, Jones OTG (1984) Ferrochelatase activity in the photosynthetic alga C.caldarium. Biochem.J. 220: 861–863Google Scholar
  4. 4.
    Camadro JM, Labbe P (1982) Kinetic studies of ferrochelatase in yeast. Biochim.Biophys.Acta 707: 280–288CrossRefGoogle Scholar
  5. 5.
    Jones MS, Jones OTG (1969) The structural organization of haem synthesis in rat liver mitochondria. Biochem.J. 113: 507–514Google Scholar
  6. 6.
    Taketani S, Tokunaga R (1981) Rat liver ferrochelatase. J.Biol.Chem. 256: 12748–12753Google Scholar
  7. 7.
    Taketani S, Tokunaga R (1982) Purification and substrate specificity of bovine liver ferrochelatase: Eur.J.Biochem. 127: 443–447Google Scholar
  8. 8.
    Hanson JW, Dailey HA (1984) Purification and characterization of chicken erythrocyte ferrochelatase Biochem.J. 222: 695–700Google Scholar
  9. 9.
    Dailey HA, Fleming JW, Harbin BM (1986) Purification of mammalian and chicken ferrochelatse. Methods Enzymol. 123: 401–415CrossRefGoogle Scholar
  10. 10.
    Honeybourne CL, Jackson JT, Jones OTG (1979) The interaction of mitochondrial ferrochelatase with a range of porphyrin substrates. FEBS Lett. 98: 207–210CrossRefGoogle Scholar
  11. 11.
    Dailey HA (1984) Effect of sulfhydryl group inactivation on the activity of bovine ferrochelatase. J.Biol.Chem. 259: 2711–2715Google Scholar
  12. 12.
    De Goeij AFPM, Van Steveninck J, Went N (1975) Characterization of protoporphyrin in red blood cells of patients with erythropoietic protoporphyria. Clin.Chim.Acta 63: 355–362CrossRefGoogle Scholar
  13. 13.
    Van Steveninck J, Dubbelman TMAR, De Goeij AFPM, Went LN (1977) Binding of protoporphyrin to hemoglobin in red blood cells of patients with erythropoetic protoporphyria. Hemoglobin 1: 679–690.CrossRefGoogle Scholar
  14. 14.
    Brun A, Sandberg S (1985) Photodynamic release of protoporphyrin from intact erythrocytes in erythropoietic protoporphyria: the effect of small repetitive light doses. Photochem.Photobiol. 41: 535–541CrossRefGoogle Scholar
  15. 15.
    Lamola AA, Piomelli S, Poh-Fitzpatrick MB, Yamane T, Harber LC (1975) Erythropoietic protoporphyria and lead intoxication: the molecular basis for difference in cutaneous photosensitivity. J.Clin.Invest. 56: 1528–1535CrossRefGoogle Scholar
  16. 16.
    Beaven GH, Gratzer WB (1978) Binding of protoporphyrin and haemin to human spectrin. Acta Haemat. 60: 321–328CrossRefGoogle Scholar
  17. 17.
    Seery VL, Muller-Eberhard U (1973) Binding of porphyrins to rabbit haemopexin and albumin. J.Biol.Chem. 248: 3796–3800Google Scholar
  18. 18.
    Moan J, Rimington C, Western A (1985) The binding of dihematoporphyrin ether (photofrin II) to human serum albumin. Clin.Chim.Acta 145: 227–236CrossRefGoogle Scholar
  19. 19.
    Grossweiner LI, Goyal GC (1984) Binding of hematoporphyrin derivative to human serum albumin. Photochem.Photobiol. 40: 1–4CrossRefGoogle Scholar
  20. 20.
    Reddi E, Riccheli F, Jori G (1981) Interaction of Human serum albumin with hematoporphyrin and its Zn and Fe derivatives. Int.J.Peptide Protein Res. 18: 402–408CrossRefGoogle Scholar
  21. 21.
    Morgan WT, Smith A, Koskelo P. (1980) The interaction of human serum albumin and hemopexin with porphyrins. Biochim.Biophys.Acta 624: 271–285Google Scholar
  22. 22.
    Rotenberg M, Margalit R (1985) Deuteroporphyrin-albumin binding equilibrium. Biochem.J. 229: 197–203Google Scholar
  23. 23.
    Smith A, Neuschatz (1983) Haematoporphyrin and 00T-diacetylhaematopor- phyrin binding by serum and cellular proteins. Biochem.J. 214: 503–509Google Scholar
  24. 24.
    Jori G, Beltramini M, Reddi E, Salvato B, Pagnan A, Ziron L, Tomio L, Tsanov T (1984) Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer lett. 24: 291–297CrossRefGoogle Scholar
  25. 25.
    Reyftmann JP, Morliere P, Goldstein S, Santus R, Dubertret L, Lagrange D (1984) Interaction of human serum law density lipoproteins with porphyrins. Photochem.Photobiol. 40: 721–729CrossRefGoogle Scholar
  26. 26.
    Kessel D (1986) Porphyrin-lipoprotein association as a factor in porphyrin localization. Cancer lett. 33: 183–188CrossRefGoogle Scholar
  27. 27.
    Norata G, Canti G, Ricci L, Nicolin A, Trezzi E, Catapano AL (1984) In vivo assimilation of low density lipoproteins by a fibrosarcoma tumor line in mice. Cancer lett. 25: 203–208CrossRefGoogle Scholar
  28. 28.
    Gal D, McDonald PC, Porter JC, Simpson EF (1981) Cholesterol metabolism in cancer cells in monolayers culture. Int.J.Cancer 29: 315–319CrossRefGoogle Scholar
  29. 29.
    Mosley, ST, Yang, YL, Falck JR, Anderson RGW (1984) Receptor mediated delivery of photoprotective agents by low density lipoprotein. Exp.Cell Res. 155: 389–396CrossRefGoogle Scholar
  30. 30.
    Candide C, Morliere P, Maziere JC, Goldstein S, Santus R, Dubertret L, Reyftmann JP, Polonovski J (1986) In vitro interaction of the photoactive anticancer porphyrin derivative photofrin II with low density lipoprotein and its delivery to cultured human fibroblasts. FEBS lett. 207: 133–138CrossRefGoogle Scholar
  31. 31.
    Kessel D, Thompson P, Saatio K, Nantwi KD (1987) Tumor localization and photosensitization by sulfonated derivatives of tetraphenylporphine. Photochem.Photobiol. 45: 787–790CrossRefGoogle Scholar
  32. 32.
    Jori G, Tomio L, Reddi E, Corti L, Zorat PL, Calzavara F (1983) Preferential delivery of liposome-incorporated porphyrins to neoplastic cells in tumor-bearing rats. Br.J.Cancer 48: 307CrossRefGoogle Scholar
  33. 33.
    Juliano RL (1981) Liposomes as a drug delivery systems. Trends Pharmacol. Sci 2: 39–40Google Scholar
  34. 34.
    Moan J, Sommer S (1984) Action spectra for hematoporphyrin derivative and photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Photochem.Photobiol. 40: 631–634CrossRefGoogle Scholar
  35. 35.
    Evensen JF, Moan J, Winkelman JW (1987) Toxic and phototoxic effects of tetraphenylporphine sulphonate and haematoporphyrin derivative in vitro. Int.J.Radiat.Biol. 51: 477–491CrossRefGoogle Scholar
  36. 36.
    Bellnier DA, Lin CW (1983) Photodynamic destruction of cultured human bladder tumor cells by hematoporphyrin derivative: effects of porphyrin molecular aggregation. Photobiochem.Photobiophys. 6: 357–366Google Scholar
  37. 37.
    Ehrenberg B, Malik Z, Nitzan Y (1985) Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, S aureus and E.coli cells. Photochem.Photobiol. 41: 429–435Google Scholar
  38. 38.
    Supino R, Delia Torre G, Ramponi R, Bottiroli G (1986) Effects of hematoporphyrin-derivative on mouse erythroleukemia cells in the absence of light irradiation. Chem.Biol.Interactions 57: 285–294CrossRefGoogle Scholar
  39. 39.
    Miyoshi N, Hisazumi H., Nakajima K, Keki 0, Fukuda M (1984) The similarity between the fluorescence spectra of hematoporphyrin derivative incorporated by rat bladder cancer tissues and CTAB. Photochem.Photobiol. 8: 115–121Google Scholar
  40. 40.
    Schneckenburger H, Panker F, Unsold E, Jocham D (1985) Intracellular distribution and retention of the fluorescent components of photofrin II. Photobiochem.Photobiophys. 10: 61–67Google Scholar
  41. 41.
    Docchio F, Ramponi R, Sacchi, CA, Bottiroli G, Freitas I (1982) Time-resolved fluorescence microscopy of hematoporphyrin-derivative in cells. Lasers Surg.Med. 2: 21–28CrossRefGoogle Scholar
  42. 42.
    Van der Putte WJM, Van Gemert MJC (1983) Haematoporphyrin-derivative fluorescence in vitro and in an animal tumour. Phys.Med.Biol. 28: 633–638CrossRefGoogle Scholar
  43. 43.
    Svanberg K, Kjeilen E, Ankerst J, Montans S, Sjöholm E, Svanberg S (1986) Fluorescence studies of hematoporphyrin derivative in normal and malignant rat tissue. Cancer Res. 46: 3803–3808Google Scholar
  44. 44.
    Berns MW, Wilson M, Rentzepis P, Burns R, Wile A (1983) Cell biology and hematoporphyrin-derivative. Lasers Surg.Med. 3: 261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • T. M. A. R. Dubbelman
    • 1
  1. 1.Department of Medical Biochemistry, Sylvius LaboratoriesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations