Skip to main content

Neuroectodermal Cells: Storage and Release of Growth Factors

  • Conference paper
Neural Development and Regeneration

Part of the book series: NATO ASI Series ((ASIH,volume 22))

  • 89 Accesses

Abstract

Neurons and glial cells, both derived from the embryonic neuroectoderm, are the principal cellular constituents of the nervous system. Homo- and heterologous cell - cell adhesion, metabolic and trophic couplings between these partners play key roles for development, maintenance and regenerative processes of neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barde YA, Lindsay RM, Monard D, Thoenen H (1978) New factor released by cultured glioma cells supporting survival and growth of sensory neurons. Nature 274:818

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RM, Barber PC, Sherwood MRC, Zimmer J, Raisman G (1982) Astrocyte cultures from adult rat brain. Derivation, characterization and neurotrophic properties of pure astroglial cells from corpus callosum. Brain Res 243:329–343

    Article  PubMed  CAS  Google Scholar 

  • Manthorpe M, Engvall C, Ruoslahti E, Longo FM, Davis GE, Varon S (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol 97: 1882–1890

    Article  PubMed  CAS  Google Scholar 

  • Rudge JS, Manthorpe M, Varon S (1985) The output of neuro- notrophic and neurite-promoting agents from rat brain astroglial cells. A microculture method for screening potentially regulatory molecules. Dev Brain Res 19:161–172

    Article  CAS  Google Scholar 

  • Varon S, Skaper StD, Facci L, Rudge JS, Manthorpe M (1987) Trophic and metabolic couplings between astroglia and neurons. In G1ial-Neurona 1 Communication in Development and Regeneration. Althaus HH, Seifert W (eds) Springer Berlin Heidelberg New York

    Google Scholar 

  • Guenther J, Nick H, Monard D (1985) A glial-derived neurite-promoting factor with protease inhibitory activity. EMBO J 4: 1963–1966

    PubMed  CAS  Google Scholar 

  • Barbin G, Selak I, Manthorpe M, Varon S (1984) Use of central neuronal cultures for the detection of neuronotrophic agents. Neurosci 12:33–43

    Article  CAS  Google Scholar 

  • Varon S, Manthorpe M, Longo FM, Williams LR (1983) Growth factors in regeneration of neural tissues. In Nerve Organ and Tissue Regeneration. Res Perspectives Seil FJ (ed) Academic Press New York

    Google Scholar 

  • Bottenstein JE, Skaper SD, Varon S, Sato GK (1980) Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium. Exp Cell Res 125: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Westerraann R, Hardung M, Meyer DK, Erhard P, Otten U, Unsicker K (1987) Neuronotrophic factors released by C6 glioma cells. J Neurochem (to be submitted)

    Google Scholar 

  • Unsicker K, MĂĽller ThH (1981) Purification of bovine adrenal chromaffin cells by differential plating. J Neurosci Meth 4:227–241

    Article  CAS  Google Scholar 

  • Livett BG (1984) Adrenal medullary chromaffin cells in vitro. Physiol Rev 64: 1103–1161

    PubMed  CAS  Google Scholar 

  • Unsicker K, Lietzke R (1987) Chromaffin cells: modified neurons that are both targets and storage sites of neuronotrophic and neurite promoting factors. In G1ial-Neuronal Communication in Development and Regeneration. Althaus HH, Seifert W (eds) Springer Berlin Heidelberg New York

    Google Scholar 

  • Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Bruchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478

    Article  PubMed  CAS  Google Scholar 

  • Eiden EE (1987) Is chromogranin a prohormone? Nature 325:301

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Benedum UM (1987) Chromogranin A and pancreastatin. Nature 325:305

    Article  PubMed  CAS  Google Scholar 

  • Brenneman DE, Eiden LE, Siegel RE (1985) Neurotrophic action of VIP on spinal cord cultures. Peptide 6:35–39

    CAS  Google Scholar 

  • Unsicker K, Reichert-Preibsch H, Schmidt R, Pettmann B, Labourdette G, Sensenbrenner M (1987) Astroglial and fibroblast growth factors have neuronotrophic functions for cultured peripheral and central nervous system neurons. Proc Natl Acad Sci USA in press

    Google Scholar 

  • Gospodarowicz A, Baird A, Cheng J, Lui GM, Esch F, Bohlen P (1986a) Isolation of fibroblast growth factor from bovine adrenal gland: physicochemical and biological characterization. Endocrinology 118:82–90

    Article  PubMed  CAS  Google Scholar 

  • Carnow ThB, Manthorpe M, Davis GE, Varon S (1985) Localized survival of ciliary ganglionic neurons identifies neuronotrophic factor bands on nitrocellulose blots. J Neurosci 5:1965–1971

    PubMed  CAS  Google Scholar 

  • Manthorpe M, Skaper StD, Williams LR, Varon S (1986) Purification of adult rat sciatic ciliary neuronotrophic factor. Brain Res 367:282–286

    Article  PubMed  CAS  Google Scholar 

  • Millar TJ, Unsicker K (1981) Catecho 1 amine-storing cells in the adrenal medulla of the pre- and postnatal rat. Cell Tissue Res 217:155–170

    Article  PubMed  CAS  Google Scholar 

  • Moore RY (1987) Parkinson’s disease - a new therapy? New England J Med 316:872–873

    Article  CAS  Google Scholar 

  • Heymann D, Heymanns J, Unsicker K (1986) Neuronotrophic activities in neuroblastoma cells: comparison ciliary neuronotrophic factor (CNTF). Abstr Europ Soc Neurochem Prague 351

    Google Scholar 

  • Heymann D, Heymanns J, Unsicker K (1987) Neuroblastoma cell lines as a source for multiple neuronotrophic activities. Soc Neurosci Abstr Vol 13

    Google Scholar 

  • Heymanns J, Unsicker K (1987, submitted) Neuroblastoma cells contain a ciliary neuronotrophic factor.

    Google Scholar 

  • Gospodarowicz D, Neufeld G, Schweigerer L (1986b) Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Diff 19:1–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unsicker, K. et al. (1988). Neuroectodermal Cells: Storage and Release of Growth Factors. In: Gorio, A., Perez-Polo, J.R., de Vellis, J., Haber, B. (eds) Neural Development and Regeneration. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73148-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73148-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73150-1

  • Online ISBN: 978-3-642-73148-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics