Studies of the Neurotransmitter Plasticity of Cultured Rat Sympathetic Neurons at the Molecular Level

  • M. J. Weber
  • B. Raynaud
  • S. Vidal
  • N. Faucon-Biguet
  • J. Mallet
Conference paper
Part of the NATO ASI Series book series (volume 22)


Cultures of sympathetic neurons from new-born rats constitute an attractive model to study the triggering and modulation of the expression of neurotransmitter phenotypic traits during neuronal differentiation. These neurons can express a variety of neurotransmitters and neuropeptides, and experiments performed in vivo or in cultures have led to insights on the molecular mechanisms of this phenotypic plasticity. In particular, several extracellular cues have been identified, which modify the expression of cholinergic and catecholaminergic characters in these cultured neurons (for a review, see Patterson, 1978): conditioned medium (CM) by certain non-neuronal cells induces the biosynthesis of acetylcholine in such cultures, and depress that of catecholamines (Patterson and Chun, 1977). On the other hand, neuronal depolarization fosters the development of noradrenergic characteristics and depresses acetylcholine (ACh) biosynthesis (Walicke et al., 1977; Walicke and Patterson, 1981). In addition, neuronal depolarization inhibits the development of substance P in rat sympathetic neurons, both in vivo and in culture (Kessler et al., 1981; Adler and Black, 1984).


Nerve Growth Factor Tyrosine Hydroxylase Sympathetic Neuron Neuronal Depolarization Nerve Growth Factor Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACHESON A.L., NAUJOKS K., THOENEN H. (1984) Nerve growth factor-mediated enzyme induction in primary cultures of bovine adrenal chromaffin cells: specificity and level of regulation. J. Neurosci. 4: 1771–1780.PubMedGoogle Scholar
  2. ADLER J.E., BLACK I.B. (1984) Plasticity of substance P in mature and aged sympathetic neurons in culture. Science 225: 1499–1500.PubMedCrossRefGoogle Scholar
  3. BLACK I.B., CHIKARAISHI D.M., LEWIS E.J. (1985) Trans-synaptic increase in RNA coding for tyrosine hydroxylase in a rat sympathetic ganglion. Brain Res. 339: 151–153.PubMedCrossRefGoogle Scholar
  4. DARNELL J.E. Jr (1982) Variety in the level of gene control in eukaryo-tic cells. Nature 297: 365–371.CrossRefGoogle Scholar
  5. ELLMAN G.L., COURTNEY K.D., ANDRES V., FEATHERSTONE R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95.PubMedCrossRefGoogle Scholar
  6. FAUCON-BIGUET N., BUDA M., LAMOUROUX A., SAMOLYK D., MALLET J. (1986) Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO J. 5: 287–291.Google Scholar
  7. FONNUM F. (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24: 407–409.PubMedCrossRefGoogle Scholar
  8. FUKADA K. (1985) Purification and partial characterization of a cholinergic neuronal differentiation factor. Proc. Natl. Acad. Sci. USA 82: 8795–8799.PubMedCrossRefGoogle Scholar
  9. GALIZZI J.P., FOSSET M., ROMEY G., LADURON P., LAZDUNSKI M. (1986) Neuroleptics of the diphenylbutylpiperidine series are potent calcium channel inhibitors. Proc. Natl. Acad. Sci. USA 83: 7513–7517.PubMedCrossRefGoogle Scholar
  10. HEFTI F., GNAHN H., SCHWAB M.E., THOENEN H. (1982) Induction of tyrosine hydroxylase by Nerve Growth Factor and by elevated K concentrations in cultures of dissociated sympathetic neurons. J. Neurosci. 2: 1554–1566.PubMedGoogle Scholar
  11. KESSLER J.A. (1985) Differential regulation of peptide and catecholamine characters in cultured sympathetic neurons.. Neuroscience. 15: 827–839.PubMedCrossRefGoogle Scholar
  12. KESSLER J.A., ADLER J.E., BOHN M.C., BLACK I.B. (1981) Substance P in level principal sympathetic neurons: regulation by impulse activity. Science. 214: 335–336.PubMedCrossRefGoogle Scholar
  13. LAMOUROUX A., FAUCON BIGUET N., SAMOLYK D., PRIVAT A., SALOMON J.C., PUJOL J.F., MALLET J. (1982) Identification of cDNA clones coding for rna tyrosine hydroxylase antigene. Proc. Natl. Acad. Sci. USA 79: 3881–3885.PubMedCrossRefGoogle Scholar
  14. LEWIS E.J., TANK A.W., WEINER N., CHIKARAISHI D.M. (1983) Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. J. Biol. Chem. 256: 14632–14637.Google Scholar
  15. MILLER R.J. (1987) Multiple calcium channels and neuronal function. Science 235: 46–52.PubMedCrossRefGoogle Scholar
  16. PATTERSON P.H. (1978) Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1: 1–17.PubMedCrossRefGoogle Scholar
  17. PATTERSON P.H., CHUN L.L.Y. (1977a) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev. Biol 56: 263–280.PubMedCrossRefGoogle Scholar
  18. PERNEY T., HIRNING L.D., LEEMAN S.E., MILLER R.J. (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc. Natl. Acad. Sci. USA 83: 6656–6659.PubMedCrossRefGoogle Scholar
  19. RAYNAUD B., CLAROUS D., VIDAL S., FERRAND C., WEBER M.J. (1987b) Comparison of the effects of elevated K+ ions and muscle-conditioned medium on the neurotransmitter phenotype of cultured sympathetic neurons. Dev. Biol, (in press).Google Scholar
  20. RAYNAUD B., FAUCON-BIGUET N., VIDAL S., MALLET J., WEBER M.J. (1987a) The use of a tyrosine hydroxylase cDNA probe to study the neurotransmitter plasticity of rat sympathetic neurons in culture. Dev. Biol. 119: 305–312.CrossRefGoogle Scholar
  21. ROHRER H., OTTEN U., THOENEN H. (1978) On the role of RNA synthesis in the selective induction of tyrosine hydroxylase by nerve growth factor. Brain Res. 159: 436–439.PubMedCrossRefGoogle Scholar
  22. SWERTS J.P., LE VAN THAI A., VIGNY A., WEBER M.J. (1983) Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. I. Effects of muscle conditioned medium. Dev. Biol. 100: 1–11.PubMedCrossRefGoogle Scholar
  23. SWERTS J.P., LE VAN THAI A., WEBER M.J. (1984) Regulation of enzymes responsible for neurotransmitter synthesis and degradation in cultured rat sympathetic neurons. II. Regulation of 16S acetylcholinesterase by conditioned medium. Dev. Biol. 103: 230–234.PubMedCrossRefGoogle Scholar
  24. WALICKE P.A., CAMPENOT R.B., PATTERSON P.H. (1977) Determination of transmitter function by neuronal activity. Proc. Natl. Acad. Sci. USA 74: 5767–5771.PubMedCrossRefGoogle Scholar
  25. WALICKE P.A., PATTERSON P.H. (1981b) On the role of Ca++ in the transmitter choice made by cultured sympathetic neurons. J. Neurosci. 1: 343–350.PubMedGoogle Scholar
  26. WAYMIRE J.C., BJUR R., WEINER N. (1971) Assay for tyrosine-hydroxylase by coupled decarboxylation of dopa formed from [1–14 C]tyrosine. Analyt. Biochem. 43: 588–600.PubMedCrossRefGoogle Scholar
  27. WEBER M. (1981) A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons. Partial purification and characterization. J. Biol. Chem. 256: 3447–3453.PubMedGoogle Scholar
  28. WOLINSKY E., PATTERSON P.H. (1983) Tyrosine hydroxylase activity decreases with induction of cholinergic properties in cultured sympathetic neurons. J. Neurosci. 3: 1495–1500.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. J. Weber
    • 1
  • B. Raynaud
    • 1
  • S. Vidal
    • 1
  • N. Faucon-Biguet
    • 2
  • J. Mallet
    • 2
  1. 1.Laboratoire de Pharmacologie et Toxicologie FondamentalesCNRS205 route de NarbonneFrance
  2. 2.Laboratoire de Neurobiologie Cellulaire et MoléculaireCNRSFrance

Personalised recommendations