Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 136))

Abstract

Since the rediscovery of bacteriophage ø X174 in the 1950 s by Robert Sinsheimer (1959), the single-stranded DNA phages have been widely used as model systems in molecular biology. ø X174 can be considered as their “ godfather. ” The single-stranded DNA bacteriophages are divided into two classes based on the morphology of their representatives, either isometric (icosahedral) or filamentous. The isometric phages follow the conventional infection cycle of adsorption, reproduction, and release of progeny particles after lysis of their host, usually Escherichia coli C. The other class, the filamentous phages, do not lyse or kill their host cell. The infected cell continues to grow and to divide, while the progeny virions are formed and extruded through the cell membrane in a continuous fashion. Both classes of single-stranded DNA phages contain a circular genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarzua P, Marians KJ (1984) Enzymatic techniques for the isolation of random single base substitutions in vitro at high frequency. Proc Natl Acad Sci USA 81: 2030–2034

    Article  PubMed  CAS  Google Scholar 

  • Abarzua P, Soeller W, Marians KJ (1984) Mutational analysis of primosome assembly sites: I. Distinct classes of mutants in the Escherichia coli factor Y DNA effector sequences. J Biol Chem 259: 14286–14292

    PubMed  CAS  Google Scholar 

  • Allison DP, Ganesan AJ, Olson AC, Snyder CM, Mitra S (1977) Electron microscopic studies of bacteriophage MI3 DNA replication. J Virol 24: 673–684

    PubMed  CAS  Google Scholar 

  • Aoyama A, Hayashi M (1985) Effects of genome size on bacteriophage øX174 DNA packaging in vitro. J Biol Chem 260: 11033–11038

    PubMed  CAS  Google Scholar 

  • Aoyama A, Hamatake RK, Hayashi M (1983) In vitro synthesis of bacteriophage øX174 by purified components. Proc Natl Acad Sci USA 80:4195–4199

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Kornberg A (1981) Unique primed start of gX174 DNA replication and mobility of the primosome in a direction opposite chain synthesis. Proc Natl Acad Sci USA 78: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Low RL, Kornberg A (1981) Movement and site selection for priming by the primosome in phage øX174 DNA replication. Proc Natl Acad Sci USA 78: 707–711

    Article  PubMed  CAS  Google Scholar 

  • Baas PD (1985) DNA replication of single-stranded Escherichia coli DNA phages. Biochim Biophys Acta 825: 111–139

    PubMed  CAS  Google Scholar 

  • Baas PD (1987) Mutational analysis of the bacteriophage X174 replication origin. J Mol Biol Baas PD, Jansz HS (1972) gX174 replicative form DNA replication, origin and direction. J Mol Biol 63: 569–576

    Google Scholar 

  • Baas PD, Jansz HS, Sinsheimer RL (1976) Bacteriophage X174 DNA synthesis in a replication deficient host. Determination of the origin of ¢X DNA replication. J Mol Biol 102: 633–656

    Google Scholar 

  • Baas PD, Teertstra WR, Jansz HS (1978) Bacteriophage X174 RF DNA replication in vivo: a biochemical study. J Mol Biol 125: 167–185

    Article  PubMed  CAS  Google Scholar 

  • Baas PD, Teertstra WR, Van Mansfeld ADM, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH (1981 a) Construction of viable and lethal mutations in the origin of bacteriophage X174 using synthetic oligodeoxyribonucleotides. J Mol Biol 152: 615–639

    Google Scholar 

  • Baas PD, Heidekamp F, Van Mansfeld ADM, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH ( 1981 b) Essential features of the origin of bacteriophage øX174 RF DNA replication. In: Ray DS, Fox CF (eds) The initiation of DNA replication. Academic, New York, pp 195–209

    Google Scholar 

  • Beck E, Zink B (1981) Nucleotide sequence and genome organization of filamentous bacteriophage fl and fd. Gene 16: 35–58

    Article  PubMed  CAS  Google Scholar 

  • Beck E, Sommer R, Auerswald EA, Kurz C, Zink B, Osterburg G, Schaller H, Sugino K, Sugisaki H, Okamoto T, Takanami M (1978) Nucleotide sequence of bacteriophage fd DNA. Nucleic Acids Res 5: 4495–4503

    Article  PubMed  CAS  Google Scholar 

  • Benbow RM, Zuccarelli AJ, Sinsheimer RL (1974) A role for single-strand breaks in bacteriophage ch X174 genetic recombination. J Mol Biol 88: 629–651

    Article  PubMed  CAS  Google Scholar 

  • Benz EW Jr, Reinberg D, Vicuna R, Hurwitz J (1980 a) Initiation of DNA replication by the dnaG protein. J Biol Chem 255: 1096–1106

    Google Scholar 

  • Benz EW Jr, Sims J, Dressler D, Hurwitz J (1980b) Tertiary structure is involved in the initiation of DNA synthesis by the dnaG protein. In: Alberts B, Fox CF (eds) Mechanistic studies of DNA replication and genetic recombination. Academic, New York, pp 279–291

    Google Scholar 

  • Boeke JD, Vovis GF, Zinder ND (1979) Insertion mutant of bacteriophage fl sensitive to Eco RI. Proc Natl Acad Sci USA 76: 2699–2702

    Article  PubMed  CAS  Google Scholar 

  • Bouché JP, Zechel K, Kornberg A (1975) dnaG gene product, a rifampicin-resistant RNA polymerase initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem 250: 5995–6001

    Google Scholar 

  • Bouché JP, Rowen L. Kornberg A (1978) The RNA primer synthesized by primase to initiate phage G4 DNA replication. J Biol Chem 253: 765–769

    PubMed  Google Scholar 

  • Bowman K, Ray DS (1975) Degradation of the viral strand of X174 parental replicative form DNA in a rep-host. J Virol 16: 838–843

    PubMed  CAS  Google Scholar 

  • Brown DR, Reinberg D, Schmidt-Glenewinkel T, Roth MJ, Zipursky SL, Hurwitz J (1982) DNA structures required for qiX174 A protein-directed initiation and termination of DNA replication. Cold Spring Harbor Symp Quant Biol 47: 701–715

    CAS  Google Scholar 

  • Brown DR, Schmidt-Glenewinkel T, Reinberg D, Hurwitz J (1983) DNA sequences which support activities of the bacteriophage 11X174 gene A protein. J Biol Chem 258: 8402–8412

    PubMed  CAS  Google Scholar 

  • Brown DR, Roth MJ, Reinberg D, Hurwitz J (1984) Analysis of bacteriophage X174 gene A protein-mediated termination and reinitiation of q$X174 DNA synthesis: I. Characterization of the termination and reinitiation reactions. J Biol Chem 259: 10545–10555

    Google Scholar 

  • Brutlag D, Schekman R, Kornberg A (1971) A possible role of RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci USA 68: 2826–2829

    Article  PubMed  CAS  Google Scholar 

  • Cleary JM, Ray DS (1980) Replication of the plasmid pBR322 under the control of a cloned replication origin from the single-stranded DNA phage M13. Proc Natl Acad Sci USA 77: 4638–4642

    Article  PubMed  CAS  Google Scholar 

  • Cleary JM, Ray DS (1981) Deletion analysis of the cloned replication origin region from bacteriophage M13. J Virol 40: 197–203

    PubMed  CAS  Google Scholar 

  • Danna KJ, Nathans D (1972) Bidirectional replication of simian virus 40 DNA. Proc Natl Acad Sci USA 69: 3097–3100

    Article  PubMed  CAS  Google Scholar 

  • Denhardt DT, Dressler D, Ray DS (1978) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Dintzis HM (1961) Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci USA 47: 247–261

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Horiuchi K (1981) Replication of a plasmid containing two origins of bacteriophage f1. J Mol Biol 153: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Zinder ND (1983) The morphogenetic signal of bacteriophage fl. Virology 130: 252–256

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Zinder ND (1984a) Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis. Proc Natl Acad Sci USA: 81: 1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Zinder ND (1984b) The minimal sequence for initiation of DNA synthesis can be reduced by qualitative or quantitative changes of an initiator protein. Nature 311: 279–280

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Enea V, Zinder ND (1981) Functional analysis of bacteriophage fl intergenic region. Virology 114: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Horiuchi K, Jakes KS, Zinder ND (1982a) Replication origin of bacteriophage f1. Two signals required for its function. J Mol Biol 162: 335–343

    Google Scholar 

  • Dotto GP, Horiuchi K, Zinder ND (1982b) Initiation and termination of phage f1 plus-strand synthesis. Proc Natl Acad Sci USA 79: 7122–7126

    Article  PubMed  CAS  Google Scholar 

  • Dotto GP, Horiuchi K, Zinder ND (1984) The functional origin of bacteriophage f1 DNA replication. Its signals and domains. J Mol Biol 172: 507–521

    Google Scholar 

  • Duguet M, Yarranton G, Gefter M (1979) The rep protein of Escherichia coli: interaction with DNA and other proteins. Cold Spring Harbor Symp Quant Biol 43: 335–343

    PubMed  CAS  Google Scholar 

  • Eisenberg S, Denhardt DT (1974a) Structure of nascent 0X174 replicative form; evidence for discontinuous DNA replication. Proc Natl Acad Sci USA 71: 984–988

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Denhardt DT ( 1974 b) The mechanism of replication of øX174 single-stranded DNA: X. Distribution of the gaps in nascent RF DNA. Biochim Biophys Res Commun 61: 532–537

    Google Scholar 

  • Eisenberg S, Finer M (1980) Cleavage and circularization of single-stranded DNA: a novel enzymatic activity of øX174 A* protein. Nucleic Acids Res 8: 5305–5315

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Kornberg A (1979) Purification and characterization of øX174 gene A protein. A multifunctional enzyme of duplex DNA replication. J Biol Chem 254: 5328–5332

    Google Scholar 

  • Eisenberg S, Harbers B, Hours C, Denhardt DT (1975) The mechanism of replication of øX174: XII. Non-random locations of gaps in nascent ø X174 RFII DNA. J Mol Biol 99: 107–123

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Griffith J, Kornberg A (1977) 1X174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci USA 74: 3198–3202

    Google Scholar 

  • Eisenberg S, Scott JF, Kornberg A (1978) An enzyme system for replicating the duplex replicative form of 0 X17 DNA. In: Denhardt DT, Dressler D, Ray DS (eds) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 287–302

    Google Scholar 

  • Fiddes JC, Barrell BG, Godson GN (1978) Nucleotide sequences of the separate origins of synthesis of bacteriophage G4 viral and complementary strands. Proc Natl Acad Sci USA 75: 1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Fluit AC, Baas PD, Van Boom JH, Veeneman GH, Jansz HS (1984) Gene A protein cleavage of recombinant plasmids containing the 0 X174 replication origin. Nucleic Acids Res 12: 6443–6454

    Article  PubMed  CAS  Google Scholar 

  • Fluit AC, Baas PD, Jansz HS (1985) The complete 30-base pair origin region of bacteriophage øX174 in a plasmid is both required and sufficient for in vivo rolling circle DNA replication and packaging. Eur J Biochem 149: 579–584

    Article  PubMed  CAS  Google Scholar 

  • Fluit AC, Baas PD, Jansz HS (1986) Termination and reinitiation signals of bacteriophage øX174 rolling circle DNA replication. Virology 154: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Francke B, Ray DS (1971) Formation of the parental replicative form DNA of bacteriophage iX174 and initial events in its replication. J Mol Biol 61: 565–586

    Article  PubMed  CAS  Google Scholar 

  • Francke B, Ray DS (1972) Cis-limited action of the gene A product of bacteriophage X174 and the essential bacterial site. Proc Natl Acad Sci USA 69: 475–479

    Article  PubMed  CAS  Google Scholar 

  • Fulford W, Model P (1984) Specificity of translational regulation by two DNA-binding proteins. J Mol Biol 173: 211–226

    Article  PubMed  CAS  Google Scholar 

  • Geider K, Beck E, Schaller H (1978) An RNA transcribed from DNA at the origin of phage fd single-strand to replicative form conversion. Proc Natl Acad Sci USA 75: 645–649

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Dressler D (1968) The rolling circle model. Cold Spring Harbor Symp Quant Biol 33: 473–484

    PubMed  CAS  Google Scholar 

  • Godson GN (1974) Origin and direction of 0X174 double-and single-stranded DNA synthesis. J Mol Biol 90: 127–141

    Article  PubMed  CAS  Google Scholar 

  • Godson GN (1977) G4 DNA replication: II. Synthesis of viral progeny single-stranded DNA. J Mol Biol 117: 337–351

    Article  PubMed  CAS  Google Scholar 

  • Godson GN (1978) The other isometric phages. In: Denhardt DT, Dressler D, Ray DS (eds) The single-stranded DNA phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 103–112

    Google Scholar 

  • Godson GN, Barrell BG, Staden R, Fiddes JC (1978) Nucleotide sequence of bacteriophage G4 DNA. Nature 276: 236–247

    Article  PubMed  CAS  Google Scholar 

  • Gray CP, Sommer R, Polke C, Beck E, Schaller H (1978) Structure of the origin of DNA replication of bacteriophage fd. Proc Natl Acad Sci USA 76: 50–53

    Article  Google Scholar 

  • Greenbaum JH, Marians KJ (1984) The interaction of Escherichia coli replication factor Y with complementary strand origins of DNA replication. Contact points revealed by DNase footprinting and protection from methylation. J Biol Chem 259: 2594–2601

    Google Scholar 

  • Grindley JN, Godson GN (1978 a) Evolution of bacteriophage ¢X174: IV. Restriction enzyme cleavage map of St-1. J Virol 127: 738–744

    Google Scholar 

  • Grindley JN, Godson GN (1978b) Evolution of bacteriophage 1X174: V. Alignment of the lX174 G4 and St-1 restriction enzyme cleavage maps. J Virol 27: 745–753

    PubMed  CAS  Google Scholar 

  • Heidekamp F, Langeveld SA, Baas PD, Jansz HS (1980) Studies of the recognition sequence of øX174 gene A protein. Cleavage site of ehX gene A protein in St-1 RFI DNA. Nucleic Acids Res 8: 2009–2021

    Article  PubMed  CAS  Google Scholar 

  • Heidekamp F, Baas PD, Van Boom JH, Veeneman GH, Zipursky SL, Jansz HS (1981) Construction and characterization of recombinant plasmid DNAs containing sequences of the origin of bacteriophage gX174 DNA replication. Nucleic Acids Res 9: 3335–3354

    Article  PubMed  CAS  Google Scholar 

  • Heidekamp F, Baas PD, Jansz HS (1982) Nucleotide sequences at the øX gene A protein cleavage site in replicative form I DNAs of bacteriophages U3, G14 and a3. J Virol 42: 91–99

    PubMed  CAS  Google Scholar 

  • Hill DF, Petersen GP (1982) Nucleotide sequence of bacteriophage f1 DNA. J Virol 44: 32–46

    PubMed  CAS  Google Scholar 

  • Horiuchi K (1986) Interaction between gene II protein and the DNA replication origin of bacteriophage f1. J Mol Biol 188: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi K, Zinder ND (1976) Origin and direction of synthesis of bacteriophage fi DNA. Proc Natl Acad Sci USA 73: 2341–2345

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi K, Ravetch JV, Zinder ND (1979) DNA replication of bacteriophage f1 in vivo. Cold Spring Harbor Symp Quant Biol 43: 389–399

    PubMed  CAS  Google Scholar 

  • Hourcade D, Dressler D (1978) Site-specific initiation of a DNA fragment. Proc Natl Acad Sci USA 75: 1652–1656

    Article  PubMed  CAS  Google Scholar 

  • Ikeda J, Yudelevich A, Hurwitz J (1976) Isolation and characterization of the protein coded by gene A of bacteriophage qiX174 DNA. Proc Natl Acad Sci USA 73: 2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Ikeda J, Yudelevich A, Shimamoto N, Hurwitz J (1979) Role of polymeric forms of the bacteriophage X174 coded gene A protein in qlX174 RFI cleavage. J Biol Chem 254: 9416–9428

    PubMed  CAS  Google Scholar 

  • Imber R, Low R, Ray D (1983) Identification of a primosome assembly site in the region of the on 2 replication origin of the E. coli mini-F plasmid. Proc Natl Acad Sci USA 80: 7132–7136

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 28: 329–347

    CAS  Google Scholar 

  • Johnson PH, Sinsheimer RL (1974) Structure of an intermediate in the replication of bacteriophage X174 deoxyribonucleic acid: the initiation site for DNA replication. J Mol Biol 83: 47–61

    Article  PubMed  CAS  Google Scholar 

  • Johnston S, Ray DS (1984) Interference between M13 and on-M13 plasmids is mediated by a replication enhancer sequence near the viral strand origin. J Mol Biol 177: 685–700

    Article  PubMed  CAS  Google Scholar 

  • Keegstra W, Baas PD, Jansz HS (1979) Bacteriophage q1X174 RF DNA replication in vivo. A study by electron microscopy. J Mol Biol 135: 69–89

    Google Scholar 

  • Kim MH, Ray DS (1985) Mutational mechanisms by which an inactive replication origin of bacteriophage M13 is turned on are similar to mechanisms of activation of ras proto-oncogenes. J Virol 53: 871–878

    PubMed  CAS  Google Scholar 

  • Kim MH, Hines JC, Ray DS (1981) Viable deletions of the M13 complementary strand origin. Proc Natl Acad Sci USA 78: 6784–6788

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1980) In: DNA replication. Freeman, San Francisco

    Google Scholar 

  • Kornberg A (1982) In: Supplement to DNA Replication. Freeman, San Francisco

    Google Scholar 

  • Koths K, Dressler D (1978) Analysis of the øX DNA replication cycle by electron microscopy. Proc Natl Acad Sci USA 75: 605–609

    Article  PubMed  CAS  Google Scholar 

  • Koths K, Dressler D (1980) The rolling circle capsid complex as an intermediate in gX174 DNA replication and viral assembly. J Biol Chem 255: 4328–4338

    PubMed  CAS  Google Scholar 

  • Lambert PF, Waring DA, Wells RD, Reznikoff WS (1986) DNA requirements at the bacteriophage G4 origin of complementary strand DNA synthesis. J Virol 58: 450–458

    PubMed  CAS  Google Scholar 

  • Lambert PF, Kawashima E, Reznikoff WS (1987) Secondary structure at the bacteriophage G4 origin of complementary-strand DNA synthesis: in vivo requirements. Gene 53: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Langeveld SA, Van Mansfeld ADM, Baas PD, Jansz HS, Van Arkel GA, Weisbeek PJ (1978) Nucleotide sequence of the origin of replication in bacteriophage X174 RF DNA. Nature 272: 417–419

    Article  Google Scholar 

  • Langeveld SA, Van Mansfeld ADM, De Winter J, Weisbeek PJ (1979) Cleavage of single-stranded DNA by the A and A* proteins of bacteriophage 5X174. Nucleic Acids Res 7: 2177–2188

    Article  PubMed  CAS  Google Scholar 

  • Langeveld SA, Van Arkel GA, Weisbeek Pi (1980) Improved method for the isolation of the A and A* proteins of bacteriophage tiS X174. FEBS Lett 114: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Langeveld SA, Van Mansfeld ADM, Van der Ende A, Van de Pol JH, Van Arkel GA, Weisbeek PJ (1981) The nuclease specificity of the bacteriophage qlX174 A* protein. Nucleic Acids Res 9: 545–563

    CAS  Google Scholar 

  • Lau PCK, Spencer JH (1985) Nucleotide sequence and genome organization of bacteriophage S13 DNA. Gene 40: 273–284

    Article  PubMed  CAS  Google Scholar 

  • Linney E, Hayashi M (1973) The two proteins of gene A of ¢X174. Nature [New Biol] 245: 6–8

    CAS  Google Scholar 

  • Marians KJ, Soeller W, Zipursky SL (1982) Maximal limits of the Escherichia coli replication factor Y effector site sequences in pBR322 DNA. J Biol Chem 257: 5656–5662

    PubMed  CAS  Google Scholar 

  • Martin DM, Godson GN (1977) G4 DNA replication: I. Origin of synthesis of the viral and complementary DNA strands. J Mol Biol 117: 321–335

    Google Scholar 

  • McMacken R, Ueda K, Kornberg A (1977) Migration of Escherichia coli dnaB protein on the template DNA strand as a mechanism in initiating DNA replication. Proc Natl Acad Sci USA 74: 4190–4194

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Gronenborn B, Muller-Hill B, Hofschneider PH (1977) Filamentous coliphage M13 as a cloning vehicle: insertion of a HindIII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci USA 74: 3642–3646

    Article  PubMed  CAS  Google Scholar 

  • Meyer TF, Geider K (1979a) Bacteriophage fd gene II-protein: I. Purification, involvement in RF replication, and the expression of gene II. J Biol Chem 254: 12636–12641

    Google Scholar 

  • Meyer TF, Geider K (1979b) Bacteriophage fd gene II-protein: II. Specific cleavage and relaxation of supercoiled RF from filamentous phages. J Biol Chem 254: 12642–12646

    Google Scholar 

  • Meyer TF, Geider K (1980) Replication of phage fd with purified proteins. In: Alberts B, Fox CF (eds) Mechanistic studies of DNA replication and genetic recombination. Academic, New York, pp 579–588

    Google Scholar 

  • Meyer TF, Geider K (1982) Enzymatic synthesis of bacteriophage fd viral DNA. Nature 296: 828–832

    Article  PubMed  CAS  Google Scholar 

  • Meyer TF, Geider K, Kurz C, Schaller H (1979) Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature 278: 365–367

    Article  PubMed  CAS  Google Scholar 

  • Model P, McGill C, Mazur B, Fulford WD (1982) The replication of bacteriophage f1: gene V protein regulates the synthessis of gene II protein. Cell 29: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Moses PB, Model P (1984) A rho-dependent transcription termination signal in bacteriophage f1. J Mol Biol 172: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Ray DS (1980) Replication of bacteriophage M13: XV. Location of the specific nick in M13 replicative form II accumulated in Escherichia coli polA exl. J Virol 34: 162–167

    PubMed  CAS  Google Scholar 

  • Nomura N, Low R, Ray DS (1982a) Identification of ColE1 sequences that direct single-strand to double-strand conversion by a iX type mechanism. Proc Natl Acad Sci USA 79: 3153–3157

    Article  PubMed  CAS  Google Scholar 

  • Nomura N, Low R, Ray DS (1982b) Selective cloning of ColE1 DNA initiation sequences using the cloning vector M13 A E101. Gene 18: 239–246

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Arai K, Okazaki T (1983) Site selection and structure of DNA-linked RNA primers synthesized by the primosome in phage 60X174 DNA replication in vitro. J Biol Chem 258: 13353–13358

    PubMed  CAS  Google Scholar 

  • Peeters BPH, Peters RM, Schoenmakers JGG, Konings RNH (1985) Nucleotide sequence and genetic organization of the genome of the N-specific filamentous bacteriophage IKe; comparison with the genome of the F-specific filamentous phages M13, fd and f1. J Mol Biol 181: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Peeters BPH, Schoenmakers JGG, Konings RNH (1986a) The gene II proteins of the filamentous phage IKe and Ff (M13, fd and f1) are not functionally interchangeable during viral strand replication. Nucleic Acids Res 14: 5067–5080

    Article  PubMed  CAS  Google Scholar 

  • Peeters BPH, Schoenmakers JGG, Konings RNH (1986b) Plasmid pKUN9, a versatile vector for the selective packaging of both DNA strands into single-stranded DNA containing phage-like particles. Gene 41: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Peeters BPH, Schoenmakers JGG, Konings RNH (1987) Functional comparison of the DNA sequences involved in the replication and packaging of the viral strands of the filamentous phage IKe and Ff (M13, fd and fl). DNA 6: 139–147

    Article  PubMed  CAS  Google Scholar 

  • Ray DS, Dueber J (1975) Structure and replication of replicative forms of the ¢X-related bacteriophage G4. In: Goulian M, Hanawalt P (eds) DNA synthesis and its regulation. Benjamin, Menlo Park, California, pp 370–385

    Google Scholar 

  • Ray DS, Cleary JM, Hines JC, Kim MH, Strathearn M, Kaguni LS, Roark M (1981) DNA initiation determinants of bacteriophage M13 and of chimeric derivatives carrying foreign replication determinants. In: Ray DS, Fox CF (eds) The initiation of DNA replication. Academic, New York, pp 169–193

    Google Scholar 

  • Reinberg D, Zipursky SL, Weisbeek PJ, Brown DR, Hurwitz J (1983) Studies on the efi X174 gene A protein-mediated termination of leading strand DNA synthesis. J Biol Chem 258: 529–537

    PubMed  CAS  Google Scholar 

  • Roth MJ, Brown DR, Hurwitz J (1984) Analysis of bacteriophage ¢X174 gene A protein-mediated termination and reinitiation of ¢X DNA synthesis: II. Structural characterization of the covalent OX A protein-DNA complex. J Biol Chem 259: 10556–10567

    PubMed  CAS  Google Scholar 

  • Sakai H, Godson GN (1985) Isolation and construction of mutants of the G4 minus strand origin: analysis of their in vivo activity. Biochim Biophys Acta 826: 30–37

    PubMed  CAS  Google Scholar 

  • Sakai H, Komano T, Godson GN (1985) Essential structures in the complementary DNA origin of bacteriophage G4. Agric Biol Chem 49: 1505–1507

    Article  CAS  Google Scholar 

  • Sakai H, Komano T, Godson GN (1987) Replication origin (ori) on the complementary DNA strand of Escherichia coli phage G4: biological properties of mutants. Gene 53: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Friedman T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison CA III, Slocombe PM, Smith M (1978) The nucleotide sequence of bacteriophage øX174. J Mol Biol 125: 225–246

    Article  PubMed  CAS  Google Scholar 

  • Sanhueza S, Eisenberg S (1984) Cleavage of single-stranded DNA by the X174 A* protein. The A* single-stranded DNA covalent linkage. Proc Natl Acad Sci USA 81: 4285–4289

    Google Scholar 

  • Sanhueza S, Eisenberg S (1985) Bacteriophage 0X174 A protein cleaves single-stranded DNA and binds to it covalently through a tyrosyl-dAMP phosphodiester bond. J Virol 53: 695–697

    PubMed  CAS  Google Scholar 

  • Schaller H (1979) The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harbor Symp Quant Biol 43: 401–408

    PubMed  CAS  Google Scholar 

  • Schaller H, Uhlmann A, Geider K (1976) A DNA fragment from the origin of single-strand to double-strand DNA replication of bacteriophage fd. Proc Natl Mad Sci USA 73: 49–53

    Article  CAS  Google Scholar 

  • Shlomai J, Kornberg A (1980a) An Escherichia coli replication protein that recognizes a unique sequences within a hairpin region in øX174 DNA. Proc Natl Acad Sci USA 77: 799–803

    Article  PubMed  CAS  Google Scholar 

  • Shlomai J, Kornberg A (1980 b) A prepriming DNA replication enzyme of Escherichia coli: II. Actions of protein n’: a sequence specific DNA dependent ATPase. J Biol Chem 255: 6794–6798

    Google Scholar 

  • Sims J, Benz EW Jr (1980) Initiation of DNA replication by the Escherichia coli dnaG protein: evidence that tertiary structure is involved. Proc Natl Acad Sci USA 77: 900–904

    Article  PubMed  CAS  Google Scholar 

  • Sims J, Dressler D (1978) Site-specific initiation of a DNA fragment: DNA sequence of the initiator region. Proc Natl Acad Sci USA 75: 3094–3098

    Google Scholar 

  • Sims J, Capon D, Dressler D (1979) dnaG (primase)-dependent origins of DNA replication: nucleotide sequences of the negative strand initiation sites of bacteriophages St-1, OK, a3. J Biol Chem 254: 12615–12628

    Google Scholar 

  • Sinsheimer RL (1959) Purification and properties of bacteriophage q’X174. J Mol Biol 1: 37–42

    Article  CAS  Google Scholar 

  • Smits MA, Jansen J, Konings RHN, Schoenmakers JGG (1984) Initiation and termination signals for transcription in bacteriophage M13. Nucleic Acids Res 12: 4071–4081

    Article  PubMed  CAS  Google Scholar 

  • Soeller E, Marians KJ (1982) Deletion mutants defining the Escherichia coli replication factor Y effector site sequences in pBR322 DNA. Proc Natl Acad Sci USA 79: 7253–7257

    Article  PubMed  CAS  Google Scholar 

  • Soeller E, Greenbaum J, Abarzua P, Marians KJ (1983) The interaction of Escherichia coli replication factor Y with origins of DNA replication. In: Cozarelli N (ed) UCLA symposia on molecular and cellular biology new series, vol 10. Liss, New York, pp 125–134

    Google Scholar 

  • Soeller W, Abarzua P, Marians KJ (1984) Mutational analysis of primosome assembly sites: II. Role of secondary structure in the formation of active sites. J Biol Chem 259: 14293–14300

    Google Scholar 

  • Stayton M, Kornberg A (1983) Complexes of Escherichia coli primase with the replication origin of G4 phage DNA. J Biol Chem 258: 13205–13212

    PubMed  CAS  Google Scholar 

  • Suggs SV, Ray DS (1977) Replication of bacteriophage M13: XI. Localization of the origin for M13 single-strand synthesis. J Mol Biol 110: 147–163

    Article  PubMed  CAS  Google Scholar 

  • Suggs SV, Ray DS (1979) Nucleotide sequence of the origin for bacteriophage M13 DNA replication. Cold Spring Harbor Symp Quant Biol 43: 379–388

    PubMed  CAS  Google Scholar 

  • Tabak HF, Griffith J, Geider K, Schaller H, Kornberg A (1974) Initiation of deoxyribonucleic acid synthesis: VII. A unique location of the gap in the M13 replicative duplex synthesized in vitro. J Biol Chem 249: 3049–3054

    PubMed  CAS  Google Scholar 

  • Van der Avoort HGAM, Van Arkel GA, Weisbeek PJ (1982) Cloned bacteriophage ¢X174 DNA sequence interferes with synthesis of the complementary strand of infecting bacteriophage glX174. J Virol 42: 1–11

    PubMed  Google Scholar 

  • Van der Avoort HGAM, Van der Ende A, Van Arkel GA, Weisbeek PJ (1984) Incompatibility regions in the single-stranded DNA phages X174, G4 and M13. J Virol 50: 533–540

    PubMed  Google Scholar 

  • Van der Ende A, Teertstra R, Van der Avoort HGAM, Weisbeek PJ (1983) Initiation signals for complementary strand DNA synthesis on single-stranded plasmid DNA. Nucleic Acids Res 11: 4957–4975

    Article  PubMed  Google Scholar 

  • Van Mansfeld ADM, Langeveld SA, Weisbeek PJ, Baas PD, Van Arkel GA, Jansz HS (1979) Cleavage site of QIX174 gene A protein in c1X and G4 RFI DNA. Cold Spring Harbor Symp Quant Biol 43: 331–334

    PubMed  Google Scholar 

  • Van Mansfeld ADM, Langeveld SA, Baas PD, Jansz HS, Van der Marel GA, Veeneman GH, Van Boom JH (1980) Recognition sequence of bacteriophage lX174 gene A protein: an initiator of DNA replication. Nature 288: 561–566

    Article  PubMed  Google Scholar 

  • Van Mansfeld ADM, Van Teeffelen HAAM, Zandberg J, Baas PD, Jansz HS, Veeneman GH, Van Boom JH (1982) A* protein of bacteriophage X174 carries an oligonucleotide which it can transfer to the 3’-OH of a DNA chain. FEBS Lett 150: 103–108

    Article  PubMed  Google Scholar 

  • Van Mansfeld ADM, Baas PD, Jansz HS (1984a) Gene A protein of bacteriophage 1X174 is a highly specific single-strand nuclease and binds via a tyrosyl residue to DNA after cleavage. Adv Exp Med Biol 179: 221–230

    PubMed  Google Scholar 

  • Van Mansfeld ADM, Van Teeffelen HAAM, Baas PD, Veeneman GH, Van Boom JH, Jansz HS (1984b) The bond in the bacteriophage X174 gene A protein-DNA complex in a tyrosyl-5’phosphate ester. FEBS Lett 173: 351–356

    Article  PubMed  Google Scholar 

  • Van Mansfeld ADM, Van Teeffelen HAAM, Fluit AC, Baas PD, Jansz HS (1986a) Effect of SSB protein on cleavage of single-stranded DNA by X gene A and A* protein. Nucleic Acids Res 14: 1845–1861

    Article  PubMed  Google Scholar 

  • Van Mansfeld ADM, Van Teeffelen HAAM, Baas PD, Jansz HS (1986b) Two juxtaposed tyrosyl-OH groups participate in øX174 gene A protein catalysed cleavage and ligation of DNA. Nucleic Acids Res 14: 4229–4238

    Article  PubMed  Google Scholar 

  • Van Wezenbeek PMGF, Hulsebos JJM, Schoenmakers JGG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11: 129–148

    Article  PubMed  Google Scholar 

  • Weisbeek PJ, Van Mansfeld ADM, Kuhlemeier C, Van Arkel GA, Langeveld SA (1981) Properties of the A and A* proteins of bacteriophage G4. The origin of G4 replicative-form DNA replication. Eur J Biochem 114: 501–507

    Article  PubMed  CAS  Google Scholar 

  • Westergaard O, Brutlag D, Kornberg A (1972) Initiation of deoxyribonucleic acid synthesis: IV. Incorporation of the ribonucleic primer into the phage replicative form. J Biol Chem 248: 1361–1364

    Google Scholar 

  • Wickener S, Hurwitz J (1975) Association of øX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of øX174 DNA. Proc Natl Acad Sci USA 72: 3342–3346

    Article  Google Scholar 

  • Wickner W, Brutlag D, Schekman R, Kornberg A (1972) RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci USA 69: 965–969

    Article  PubMed  CAS  Google Scholar 

  • Yen TSB, Webster RE (1982) Translational control of bacteriophage f1 gene II and gene X proteins by gene V protein. Cell 29: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Zechel K, Bouché JP, Kornberg A (1975) Replication of phage G4. A novel and simple system for the initiation of deoxyribonucleic acid synthesis. J Biol Chem 250: 4684–4689

    PubMed  CAS  Google Scholar 

  • Zinder ND, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49: 101–106

    PubMed  CAS  Google Scholar 

  • Zipursky SL, Marians KJ (1980) Identification of two Escherichia coli factor Y effector sites near the origins of replication of the plasrnids Col E1 and pBR322. Proc Natl Acad Sci USA 77: 6521–6524

    Article  PubMed  CAS  Google Scholar 

  • Zipursky SL, Marians KJ (1981) Escherichia coli Y sites of plasmid pBR322 can function as origins of DNA replication. Proc Natl Acad Sci USA 78: 6111–6115

    Article  PubMed  CAS  Google Scholar 

  • Zipursky SL, Reinberg D, Hurwitz J (1980) In vitro DNA replication of recombinant plasmid DNAs containing the origin of progeny replicative form DNA synthesis of phage øX174. Proc Natl Acad Sci USA 77:5182–5186

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin AS, Drygin YuF, Bogdanov AA (1984) Bacteriophage øX174 A* protein binds in vitro to the phage øX174 DNA by a phosphodiester bond via a tyrosine residue. Biochemistry International 9: 799–806

    PubMed  CAS  Google Scholar 

  • Zuccarelli AJ, Benbow RM, Sinsheimer RL (1976) Formation of parental replicative form of bacteriophage øX174. J Mol Biol 106: 375–402

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baas, P.D., Jansz, H.S. (1988). Single-Stranded DNA Phage Origins. In: Hobom, G., Rott, R. (eds) The Molecular Biology of Bacterial Virus Systems. Current Topics in Microbiology and Immunology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73115-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73115-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73117-4

  • Online ISBN: 978-3-642-73115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics