Biotransformations of γ-Picoline in the Rat

  • P.-L. Nguyen
  • Y. Saint-Jalm
  • H. Dutertre-Catella
  • R. Truhaut
  • J. R. Claude
Conference paper
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 12)

Abstract

γ-Picoline (4-methylpyridine) is used as the starting material in the manufacture of isonicotinic acid and derivatives like isoniazid, in waterproofing agents for fabrics, and as solvent for resins. In spite of its use in large quantities, the toxicity and biotransformations of y-picoline have not been thoroughly studied. The objective of the present work was to investigate the biotransformations of γ-picoline in the rat.

Keywords

High Performance Liquid Chromatography Ketone Diethyl Biotransformation Isoniazid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boxenbaum HG, Riegelman S (1974) Determination of isoniazid and metabolites in biological fluids. J Pharm Sci 63:1191–1197PubMedCrossRefGoogle Scholar
  2. Chambon P, Chambon-Mougenot R (1969) Recherches sur les métabolites à fonction N-oxyde. Etude expérimentale sur le NN.diéthylnicotinamide (Coramine). C R Acad Sci (Paris) 268:Série D:443–444Google Scholar
  3. Chaykin S, Bloch K (1959) The metabolism of nicotinamide N-oxide. Biochem Biophys Acta 31:213–216PubMedCrossRefGoogle Scholar
  4. Cohn R (1893) Über das Verhalten einiger Pyridin und Naphtalinderivate im tierischen Stoffwechsel. Z. Physiol Chem 18:112–120Google Scholar
  5. Curtius T (1902) Synthetische Versuche mit Hippurazid. Ber 35:3226–3228Google Scholar
  6. De Boer JJ, Backer HJ (1954) A new method for the preparation of diazomethane. Rec Trav Chim Pays Bas 73:229–234CrossRefGoogle Scholar
  7. Ellard GA, Gammon PT, Wallace SM (1972) Determination of isoniazid, and its metabolites acetylisoniazid, monoacetylhydrazine, diacetylhydrazine, isonicotinic acid and isonicoti-noylglycine in serum and urine. Biochem J 126:449–458PubMedGoogle Scholar
  8. Gorrod JW, Damani LA (1980) The metabolic N-oxidation of 3-substituted pyridines in various animal species in vivo. Eur J Drug Metab Pharmacokin 5:53–57CrossRefGoogle Scholar
  9. Hawksworth G, Scheline RS (1975) Metabolism in the rat of some pyrazine derivatives having flavour importance in food. Xenobiotica 5:389–399PubMedCrossRefGoogle Scholar
  10. Kovats E (1958) Gas-chromatographische Characterisierung organischer Verbindungen. Teil 1: Retentionindice aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41:1915–1932CrossRefGoogle Scholar
  11. Matsui H, Kasao M, Imamura S (1978) High performance liquid chromatographic determination of hippuric acid in human urine. J Chromatogr 145:231–236PubMedCrossRefGoogle Scholar
  12. Meyer H, Graf R (1930) Über die Kondensation von Pyridin und Chinolincarbonsäuren mit Aminosäuren. Biochem Z 229:154–163Google Scholar
  13. Rohrlich M (1951) Darstellung der Nicotinursäure. Arch Pharm 284:6–7CrossRefGoogle Scholar
  14. Sendju Y (1927) Über das Verhalten des α-Picolins und der α-Picolinsäure im Organismus verschiedener Tiere. J Biochem (Tokyo) 7:273–281Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P.-L. Nguyen
    • 1
  • Y. Saint-Jalm
    • 1
  • H. Dutertre-Catella
    • 1
  • R. Truhaut
    • 1
  • J. R. Claude
    • 1
  1. 1.Laboratoire de ToxicologieFaculté de PharmacieParisFrance

Personalised recommendations