Skip to main content

Exact Results for the Out of Plane Dynamical Correlation Function in a Classical Easy Plane Ferromagnet at Low Temperatures

  • Conference paper
  • 168 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 23))

Abstract

Projection operator methodsl reduce the problem of calculating the spin density dynamical correlation function of spin systems to that of calculating the spin current relation function \( {\rm{\gamma }}_{\rm{q}}^{\rm{a}}\left( \omega \right), \) , by means of the exact result

$$ {\rm{R}}_{\rm{q}}^\alpha \left( {\rm{z}} \right){\rm{ = }}\int_{\rm{0}}^\infty {{{\rm{d}}^{{\rm{izt}}}}} {\rm{ < S}}_{\rm{q}}^\alpha \left( {\rm{t}} \right){\rm{S}}_{{\rm{ - q}}}^\alpha {\rm{ > dt = }}{{{\rm{i < S}}_{\rm{q}}^\alpha {\rm{S}}_{{\rm{ - q}}}^\alpha {\rm{ > }}} \over {{\rm{z - \omega }}_{\rm{q}}^{\alpha {\rm{,2}}}{\rm{/}}\left( {{\rm{z + \gamma }}_{\rm{q}}^{\rm{z}}\left( {\rm{z}} \right)} \right)}}{\rm{.}} $$

(1) where \( {\rm{\omega }}_{\rm{q}}^{{\rm{\alpha ,2}}} \) is the exact second moment \({\rm{ < \dot S}}_{\rm{q}}^{\rm{\alpha }}{\rm{\dot S}}_{{\rm{ - q}}}^{\rm{\alpha }}{\rm{ > / < S}}_{\rm{q}}^{\rm{\alpha }}{\rm{S}}_{{\rm{ - q}}}^{\rm{\alpha }}{\rm{ > }}\) , and < > denotes an equilibrium average. For classical systems below tneir lower critical dimension, the coherence length diverges as T → O. One expects to observe well defined spin waves at all wave vectors at T = 0, which implies that \({\rm{\gamma }}_{\rm{q}}^{\rm{\alpha }}\left( {\rm{\omega }} \right) \to 0.\) → O. One can expand \({\rm{\gamma }}_{\rm{q}}^{\rm{\alpha }}\left( {\rm{\omega }} \right)\) as a power series in the temperature,

$$ {\rm{\gamma }}_{\rm{q}}^{\rm{\alpha }}\left( {\rm{\omega }} \right) = {\rm{KT\gamma }}_{{\rm{1,q}}}^{\rm{\alpha }}\left( {\rm{\omega }} \right){\rm{ + }}{\left( {{\rm{KT}}} \right)^{\rm{2}}}{\rm{\gamma }}_{{\rm{2,q}}}^{\rm{\alpha }}\left( {\rm{\omega }} \right){\rm{ + }} \ldots $$

(2) and, barring singularities in the higher order terms the dynamics will be determined by \({\rm{\gamma }}_{{\rm{1,q}}}^{\rm{\alpha }}\left( {\rm{\omega }} \right)\) or perhaps if this vanishes, \({\rm{\gamma }}_{{\rm{2,q}}}^{\rm{\alpha }}\left( {\rm{\omega }} \right)\) . These, however, can be calculated at T = 0, where the spin wave theory gives an exact picture of the small amplitude dynamics. The first calculation of this kind made use of an equation of motion approach for the dynamics of the operators appearing in the definition of \({\rm{\gamma }}_{\rm{q}}^{\rm{\alpha }}\left( {\rm{\omega }} \right)\) ., i.e.,

$$ {\rm{\gamma }}_{\rm{q}}^{\rm{\alpha }}\left( {\rm{\omega }} \right) = {\rm{ < \ddot S}}_{\rm{q}}^{\rm{\alpha }}{\rm{Q}}{\left( {{\rm{z - QLQ}}} \right)^{{\rm{ - 1}}}}{\rm{Q\ddot S}}_{{\rm{ - q}}}^{\rm{\alpha }}{\rm{ > / < }}{{\rm{\dot S}}_{\rm{q}}}{{\rm{\dot S}}_{{\rm{ - q}}}}{\rm{ > ,}} $$

(3) where Q isαa projection operator that projects out the part of an operator that contains \({\rm{S}}_{\rm{q}}^{\rm{\alpha }}\) or \({\rm{S}}_{\rm{q}}^{\rm{\alpha }}\) , and L is the Liouville operator for the system. It was subsequently realized that a straightforward spin wave calculation led to the same results for the Heisenberg model.2 The spin wave theory is applicable, I believe, to any system below its lower critical dimension. A treatment has been given for the two dimensional Heisenberg2 model and for the in plane motion of the easy plane ferromagnet,3

$$ {\rm{H = - J}}\mathop \sum \limits_{\rm{i}} \left( {{{{\rm{\vec S}}}_{\rm{i}}} \cdot {{{\rm{\vec S}}}_{{\rm{i + 1}}}}{\rm{ + D}}{{\left( {{\rm{S}}_{\rm{i}}^{\rm{z}}} \right)}^{\rm{2}}}} \right){\rm{.}} $$

(4) The results of this theory agree with that of the isotropic model as D → O, and the theories of Villain,4 and Nelson and Fisher5 at long wavelengths. They disagree with calculations by Cieplak and Sjolander6 based upon the equation of motion method, although the two results should agree in principle. I attribute this to numerical errors in the final evaluation of their results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Reiter and A. Sjolander, Phys. Rev. B. 21, 5356 (1980).

    Article  Google Scholar 

  2. G. Reiter, Phys. Rev. B. 21, 5356 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Reiter, “Magnetic Excitations and Fluctuations”, S. W. Lovesey, U. Balucani, F. Borsa and V. Tognetti, eds., (Springer, Berlin, Heidelberg 1984).

    Google Scholar 

  4. J. Villain, J. de Physique 35, 27 (1974).

    Google Scholar 

  5. D. Nelson and D. S. Fisher, Phys. Rev. B. 16, 4945 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Cieplak and A. Sjolander, J. Phys. C 14, 4861 (1981).

    ADS  Google Scholar 

  7. J. M. Loveluck, T. Schneider, E. Stoll and J. R. Jauslin, Phys. Rev. Lett. 45, 1505 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reiter, G. (1987). Exact Results for the Out of Plane Dynamical Correlation Function in a Classical Easy Plane Ferromagnet at Low Temperatures. In: Balucani, U., Lovesey, S.W., Rasetti, M.G., Tognetti, V. (eds) Magnetic Excitations and Fluctuations II. Springer Proceedings in Physics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73107-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73107-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73109-9

  • Online ISBN: 978-3-642-73107-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics