Hamiltonian Approach to the Theory of Anomalies

  • L. Faddeev


It is used to speak of anomaly if a particular symmetry of the classical field theory is not satisfied after quantization. In these lectures I shall consider some recent developments in the case of nonabelian anomaly, namely the breaking of the gauge invariance in the model of the Weyl fermions interacting with the Yang-Mills field. The literature on this subject is quite numerous and I can refer to original monograph [1] and review articles in [2].


Gauge Group Dirac Operator Classical Field Theory Multilinear Function Weyl Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Treiman, R. Jackiw, B. Zumino, E. Witten: Current Algebra and Anomalies, World Scientific, Singapore, 1985MATHGoogle Scholar
  2. 2.
    W. Bardeen, A. White: Anomalies, Geometry, Topology, World Scientific, Singapore, 1985Google Scholar
  3. 3.
    K. Fujikawa: Phys. Rev. D21, 2848 (1980)MathSciNetADSGoogle Scholar
  4. 4.
    J. Wess, B. Zumino: Phys. Lett. B37, 95 (1971)MathSciNetADSGoogle Scholar
  5. 5.
    L. Faddeev: Phys. Lett. 145B, 82 (1984)MathSciNetADSGoogle Scholar
  6. 6.
    A. Reiman, M. Semenov-Tjan-Shensky, L. Faddeev: Fune. Anal. Appl. 18. 64 (1984)Google Scholar
  7. 7.
    W. Bardeen: Phys. Rev. 184. 1848 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    B. Zumino: Les Hauehes Lectures, 1983Google Scholar
  9. 9.
    R. Stora: Cargere Seminar 1983, preprint LAAP TH94 1983Google Scholar
  10. 10.
    L. Faddeev, S. Shatashvili: PMPh. 60, 206 (1984)MathSciNetGoogle Scholar
  11. 11.
    I. Zinger: Asterisque 1985 (EMF, Lion)Google Scholar
  12. 12.
    J. Mickelsson: Comm. Math. Phys. 97, 361 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    L. Faddeev, S. Shatashvili: Phys. Lett. 167B, 225 (1986)ADSGoogle Scholar
  14. 14.
    O. Babelon, F. Shaposnik, C. Viallet: Phys. Lett. 177B, 385 (1986)ADSGoogle Scholar
  15. Kulikov: Serpukhov preprint IHEP 86–83;Google Scholar
  16. Harader, I. Tsutsui: preprint TIP/HEP-94Google Scholar
  17. 15.
    A. Polyakov: Phys. Lett. 103B, 207 (1981)MathSciNetADSGoogle Scholar
  18. 16.
    I. Zinger, I. Frenkel: (in preparation)Google Scholar
  19. S.-G. Jo: Phys. Lett. 163B, 353 (1985)MathSciNetADSGoogle Scholar
  20. 17.
    M. Kobajashi, K. Seo, A. Sugamoto: Nucl. Phys. B273, 607 (1986)ADSCrossRefGoogle Scholar
  21. 18.
    G. Segal: Oxford preprint, 1985Google Scholar
  22. 19.
    L. Alvarez-Gaume, Nelson: Comm. Math. Phys. 99, 103 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 20.
    A.J. Niemi, G.W. Semenoff: Phys. Rev. Lett. 56. 1029 (1986)MathSciNetADSCrossRefGoogle Scholar
  24. 21.
    H. Sonoda: Nucl. Phys. B266, 410 (1986)MathSciNetADSCrossRefGoogle Scholar
  25. 22.
    K. Fujikawa: Phys. Lett. 171B, 424 (1986)MathSciNetADSGoogle Scholar
  26. 23.
    S.-G. Jo: MIT preprint CTP W1419 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Faddeev
    • 1
  1. 1.LOMILeningradUSSR

Personalised recommendations