Gibbs Measure in Landau Gauge for Abelian Lattice Gauge Theories

Conference paper

Abstract

A new method is proposed, which in compact abelian lattice gauge theories allows to investigate expectations in Landau gauge analytically as well as numerically without using δ-constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    S. Elitzur: Phys. Rev. D12, 3978 (1975)ADSGoogle Scholar
  2. G.F. de Angelis, D. de Falco, F. Guerra: Phys. Rev. D10, 1624 (1978)Google Scholar
  3. 2.
    S. Coleman, E. Weinberg: Phys. Rev. D7, 1888 (1973)ADSGoogle Scholar
  4. 3.
    D.A. Kirzhnits, A.D. Linde: Phys. Lett. 42B, 471 (1972)ADSGoogle Scholar
  5. S. Weinberg: Phys. Rev. D9, 3357 (1974)ADSGoogle Scholar
  6. L. Dolan, R. Jackiw: ibid. 3320Google Scholar
  7. For a review of applications in inflationary universe scenarios see R.H. Brandenberger: Rev. Mod. Phys. 57, 1 (1985)ADSCrossRefGoogle Scholar
  8. 4.
    See for example A. Hasenfratz, P. Hasenfratz: Tallahassee preprint FSU-SCRI-86–30 (1986), to be published in Phys. Rev. DGoogle Scholar
  9. 5.
    J. Fröhlich, G. Morchio, F. Strocchi: Nucl. Phys. B190, 553 [FS3] (1981)Google Scholar
  10. 6.
    T. Kennedy, C. King: Commun. Math. Phys. 104, 327 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 7.
    C. Borgs, F. Nill: Commun. Math. Phys.104. 349 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  12. Phys. Lett. B171. 289 (1986)Google Scholar
  13. F. Nill: “New bounds on the phase transition line in a non-compact abelian lattice Higgs model”, ETH-Preprint, Jan. 1987Google Scholar
  14. 8.
    C. Borgs, F. Nill: “The phase diagramm of the abelian lattice Higgs model. - A review of rigorous results”, Proceedings Trebon Conf., Sept. 1986 (ETH-Preprint Dec. 1986) to appear in J. Stat. Phys.Google Scholar
  15. 9.
    C. Borgs, F. Nill: Nucl. Phys. B270, 92 [FS16] (1986). For the case d < 4 see also F. Nill: Ph.D. Thesis, Lud. Max. Universität München 1987MathSciNetADSCrossRefGoogle Scholar
  16. 10.
    F. Nill: Max-Planck Preprint MPI-PAE/PTh 39/85, June 1985; “Faddeev-Popov Trick and Loop Expansion in the Presence of Gribov Copies - A Differential Geometric Survey”, Talk given at the XV. Int. Conf. Diff. Geom. Method, Clausthal, July 1986, to appear in proceedingsGoogle Scholar
  17. 11.
    F. Nill: Ref. [9] and in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • F. Nill
    • 1
  1. 1.Department of MathematicsETH-ZentrumZürichSwitzerland

Personalised recommendations