Resolution of the U(1) Problem by Lattice Gauge Theory

Conference paper


The U(1) problem is a longstanding problem and the main motivation to study topological properties of SU(3) lattice gauge theory. In this seminar I will quickly review (one way of stating) the U(1) problem and point out the first indications towards the solution of it. A slightly different presentation is given by Fröhlich elsewhere in these proceedings. Then I will discuss an approximation that makes the problem accessible to calculations in pure gauge theory (i.e. without dynamical fermions). Subsequently the results of SU(3) lattice calculations will be reviewed, and their results presented as the resolution of the U(1) problem.


Gauge Theory Lattice Spacing Topological Charge Goldstone Boson String Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G ‘t Hooft: Phys. Rev. Lett. 37, 8 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    G ‘t Hooft: Phys. Rev. D14. 3432 (1976)ADSGoogle Scholar
  3. G ‘t Hooft: Phys. Rev. D18, 2199 (1978)ADSGoogle Scholar
  4. 2.
    E. Witten: Nucl. Phys. B156. 269 (1979)MathSciNetADSCrossRefGoogle Scholar
  5. G. Veneziano: Nucl. Phys. B159. 213 (1979)MathSciNetADSCrossRefGoogle Scholar
  6. 3.
    J. Smit: Talk at the 1986 Coseners House meeting on Lattice Gauge TheoryGoogle Scholar
  7. 4.
    M. Luscher: Comm. Math. Phys. 85 39 (1982)MathSciNetADSCrossRefGoogle Scholar
  8. 5.
    P. Di Vecchia, K. Fabricius, G.C. Rossi and G. Veneziano: Nucl. Phys. 1192, 392 (1981)CrossRefGoogle Scholar
  9. P. Di Vecchia, K. Fabricius, G.C. Rossi and G. Veneziano: Phys. Lett. 108B. 323 (1982)ADSGoogle Scholar
  10. 6.
    P. Woit: Phys. Rev. Lett. 51. 638 (1983)ADSCrossRefGoogle Scholar
  11. P. Woit: Nucl. Phys. B262. 284 (1985)MathSciNetADSCrossRefGoogle Scholar
  12. 7.
    Y. Arian and P. Woit: Topological Susceptibility in SU(3) Lattice Gauge Theory, SUNY preprint (1986)Google Scholar
  13. 8.
    J. Hoek: Comp. Phys. Comm. 39 21 (1986)ADSCrossRefGoogle Scholar
  14. J. Hoek: Phys. Lett. 166B, 199 (1986)ADSGoogle Scholar
  15. J. Hoek, M. Teper and J. Watérhouse: Phys. Lett. 180B. 112 (1986); Topological Fluctuations and Susceptibility in SU(3) Lattice Gauge Theory, RAL preprint 86–103, to appear in Nucl. Phys. BADSGoogle Scholar
  16. 10.
    M. Gockeler, A.S. Kronfeld, M.L. Laursen, G. Schierholz, U.-J. Wiese: Topology in SU(3) Lattice Gauge Theory: First Calculation of the Topological Susceptibility, preprint DESY 86–107Google Scholar
  17. 11.
    J. Hoek: Long Timeseale Correlations in Topological Quantities, preprint UMSI 87/6, to appear in Phys. Lett. BGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • J. Hoek
    • 1
  1. 1.Rutherford Appleton LaboratoryChilton, Didcot,OxonUK

Personalised recommendations