Skip to main content

Cytology

  • Chapter
Paramecium

Abstract

Paramecium is a single-celled eukaryotic organism. Being an organism, Paramecium carries on all the normal functions required to sustain and propagate life, including growth, metabolism, catabolism, and reproduction. Being a cell, and more specifically an aerobic cell, Paramecium contains the typical structures and organelles of aerobic nonphotosynthetic eukaryotic cells. These include an uninterrupted cell membrane, a cytoplasm containing mitochondria, ribosomes, endoplasmic reticulum, a Golgi apparatus, an endocytic system of coated pits, and shuttle vesicles, a phagosome-lysosome system and food storage bodies, and a nuclear system containing nucleoli, chromatin, and nuclear envelope. In addition, Paramecium possesses the elements necessary for movement, both of the cell as a whole and of the organelles within the cell. These elements are the microtubules and microfilaments variously organized into multiple cilium-basal body complexes and into bundles, bands, meshworks, and ribbons within the cytoplasm. Paramecium also contains more specialized structures found in only a few eukaryotic cells. These are the contractile vacuole complexes, the dual nuclear system, the alveolar system, and the specialized extrusive organelles called trichocysts, as well as the highly structured oral apparatus and the cytoproct, the site of defecation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RD (1971) Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol 49:1–20

    Article  PubMed  CAS  Google Scholar 

  • Allen RD (1974) Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol 63:904–922

    Article  PubMed  CAS  Google Scholar 

  • Allen RD (1978) Particle arrays in the surface membrane of Paramecium junctional and possible sensory sites. J Ultrastruct Res 63:64–78

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Eckert R (1969) A morphological system in ciliates comparable to the sarcoplasmic reticulum-transverse tubular system in striated muscles. J Cell Biol 43:4a–5a

    Google Scholar 

  • Allen RD, Fok AK (1980) Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J Cell Sci 45:131–145

    PubMed  CAS  Google Scholar 

  • Allen RD, Fok AK (1983a) Phagosome fusion vesicles of Paramecium. I. Thin-section morphology. Eur J Cell Biol 29:150–158

    CAS  Google Scholar 

  • Allen RD, Fok AK (1983b) Phagosome fusion vesicles of Paramecium. II. Freeze-fracture evidence for membrane replacement. Eur J Cell Biol 29:159–165

    CAS  Google Scholar 

  • Allen RD, Fok AK (1983c) Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium. J Cell Biol 97:566–570

    Article  CAS  Google Scholar 

  • Allen RD, Fok AK (1984a) Stages of digestive vacuoles in Paramecium membrane surface differences and location. Eur J Cell Biol 35:149–155

    Google Scholar 

  • Allen RD, Fok AK (1984b) Membrane behavior of exocytic vesicles. III. Flow of horseradish peroxidase labeled trichocyst membrane remnants in Paramecium. Eur J Cell Biol 35:27–34

    Google Scholar 

  • Allen RD, Fok AK (1984c) Retrieval of lysosomal membrane and acid phosphatase from phagolysosomes of Paramecium caudatum. J Cell Biol 99:1955–1959

    Article  CAS  Google Scholar 

  • Allen RD, Fok AK (1985) Modulation of the digestive lysosomal system in Paramecium caudatum. III. Morphological effects of cytochalasin B. Eur J Cell Biol 37:35–43

    PubMed  CAS  Google Scholar 

  • Allen RD, Hausmann K (1976) Membrane behavior of exocytic vesicles. I. The ultrastructure of Paramecium trichocysts in freeze-fracture preparations. J Ultrastruct Res 54:224–234

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Staehelin LA (1981) Digestive system membranes: freeze-fracture evidence for differentiation and flow in Paramecium. J Cell Biol 89:9–20

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Wolf RW (1974) The cytoproct of Paramecium caudatum structure and function, microtubules, and fate of food vacuole membranes. J Cell Sci 14:611–631

    PubMed  CAS  Google Scholar 

  • Bannister LH (1972) The structure of trichocysts in Paramecium caudatum. J Cell Sci 11:899–929

    PubMed  CAS  Google Scholar 

  • Beisson J, Sonneborn TM (1965) Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc Natl Acad Sci USA 53:275–282

    Article  PubMed  CAS  Google Scholar 

  • Beisson J, Lefort-Tran M, Pouphile M, Rossignol M, Satir B (1976) Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wildtype and mutant strains. J Cell Biol 69:126–143

    Article  PubMed  CAS  Google Scholar 

  • Clawson GA, Feldherr CM, Smuckler EA (1985) Nucleocytoplasmic RNA transport. Mol Cell Biochem 67:87–100

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Adoutte A, Grandcamp S, Houdebine LM, Beisson J (1982) Immunocytochemical study of microtubular structures throughout the cell cycle of Paramecium. Biol Cell 44:35–44

    CAS  Google Scholar 

  • Cohen J, Garreau de Loubresse N, Beisson J (1984a) Actin mobilization during phagocytosis in Paramecium. J Submicrosc Cytol 16:103–104

    CAS  Google Scholar 

  • Cohen J, Garreau de Loubresse N, Beisson J (1984b) Actin microfllaments in Paramecium localization and role in intracellular movements. Cell Motil 4:443–468

    Article  CAS  Google Scholar 

  • Csaba G (1985) The unicellular Tetrahymena as a model cell for receptor research. Int Rev Cytol 95:327–377

    Article  PubMed  CAS  Google Scholar 

  • Dentler WL (1980) Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci 42:207–220

    PubMed  CAS  Google Scholar 

  • Dippell RV (1968) The development of basal bodies in Paramecium. Proc Natl Acad Sci USA 61:461–468

    Article  PubMed  CAS  Google Scholar 

  • Dippell RV (1976) Effects of nuclease and protease digestion on the ultrastructure of Paramecium basal bodies. J Cell Biol 69:622–637

    Article  PubMed  CAS  Google Scholar 

  • Dute R, Kung C (1978) Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia. J Cell Biol 78:451–464

    Article  PubMed  CAS  Google Scholar 

  • Ehret CF, McArdle EW (1974) The structure of Paramecium as viewed from its constituent levels of organization. In: Van Wagtendonk WJ (ed) Paramecium. A current survey. Elsevier, Amsterdam London New York, pp 263–338

    Google Scholar 

  • Ehret CF, Alblinger J, Savage N (1964) Development and ultrastructural studies of cell organelles. Argonne Nat Lab Biol Med Div Annu Rep 6971:62–70

    Google Scholar 

  • Esteve J-C (1969) Observations sur l’ultrastructure et le métabolisme du glycogene de Paramecium caudatum. Arch Protistenk 111:195–203

    CAS  Google Scholar 

  • Esteve J-C (1970) Distribution of acid phosphatase in Paramecium caudatum its relations with the process of digestion. J Protozool 17:24–35

    PubMed  CAS  Google Scholar 

  • Esteve J-C (1972) L’appareil de Golgi des Cilies. Ultrastructure, particulièrement chez Paramecium. J Protozool 19:609–618

    PubMed  CAS  Google Scholar 

  • Fok AK, Allen RD (1979) Axenic Paramecium caudatum. I. Mass culture and structure. J Protozool 26:463–470

    PubMed  CAS  Google Scholar 

  • Fok AK, Allen RD (1981) Axenic Paramecium caudatum. II. Changes in fine structure with culture age. Eur J Cell Biol 25:182–192

    PubMed  CAS  Google Scholar 

  • Fok AK, Lee Y, Allen RD (1982) The correlation of digestive vacuole pH and size with the digestive cycle in Paramecium caudatum. J Protozool 29:409–414

    Google Scholar 

  • Fok AK, Muraoka JH, Allen RD (1984) Acid phosphatase in the digestive vacuoles and lysosomes of Paramecium caudatum a timed study. J Protozool 31:216–220

    CAS  Google Scholar 

  • Gelei G von (1973) Ein neues Fibrillensystem in Ectoplasma von Paramecium. Arch Protistenk 89:133–162

    Google Scholar 

  • Hausmann K (1978) Extrusive organelles in protists. Int Rev Cytol 52:197–276

    Article  PubMed  CAS  Google Scholar 

  • Hausmann K, Allen RD (1976) Membrane behavior of exocytic vesicles. II. Fate of the tri-chocyst membranes in Paramecium after induced trichocyst discharge. J Cell Biol 69:313–326

    Article  PubMed  CAS  Google Scholar 

  • Hausmann K, Allen RD (1977) Membranes and microtubules of the excretory apparatus of Paramecium caudatum. Cytobiologie 15:303–320

    Google Scholar 

  • Hausmann K, Stockem W, Wohlfarth-Bottermann K-E (1972) Cytologische Studien an Trichocysten. II. Die Feinstruktur ruhender und gehemmter Spindeltrichocysten von Paramecium caudatum. Cytobiologie 5:228–246

    Google Scholar 

  • Hufnagel LA (1969) Cortical ultrastructure of Paramecium aurelia. Studies on isolated pellicles. J Cell Biol 40:779–801

    Article  PubMed  CAS  Google Scholar 

  • Inaba F, Kudo N (1972) Electron microscopy of the nuclear events during binary fission in Paramecium multimicronucleatum. J Protozool 19:57–63

    PubMed  CAS  Google Scholar 

  • Janisch R (1972) Pellicle of Paramecium caudatum as revealed by freeze etching. J Protozool 19:470–472

    Google Scholar 

  • Jurand A, Selman GG (1969) The anatomy of Paramecium aurelia. Macmillan, London; St. Martin’s press, New York

    Google Scholar 

  • Jurand A, Selman GG (1970) Ultrastructure of the nuclei and intranuclear microtubules of Paramecium aurelia. J Gen Microbiol 60:357–364

    Google Scholar 

  • Karakashian MW, Karakashian SJ (1973) Intracellular digestion and symbiosis in Paramecium bursaria. Exp Cell Res 81:111–119

    Article  PubMed  CAS  Google Scholar 

  • Karakashian SJ, Rudzinska MA (1981) Inhibition of lysosomal fusion with symbiont-containing vacuoles in Paramecium bursaria. Exp Cell Res 131:387–393

    Article  PubMed  CAS  Google Scholar 

  • Kersken H, Vilmart-Seuwen J, Momayezi M, Plattner H (1986) Filamentous actin in Paramecium cells: mapping by phalloidin affinity labeling in vivo and in vitro. J Histochem Cytochem 34:443–454

    Article  PubMed  CAS  Google Scholar 

  • Mast SO (1947) The food vacuole in Paramecium. Biol Bull 92:31–72

    Article  PubMed  CAS  Google Scholar 

  • McKanna JA (1973) Fine structure of the contractile vacuole pore in Paramecium. J Protozool 20:631–638

    PubMed  CAS  Google Scholar 

  • McKanna JA (1976) Fine structure of fluid segregation organelles of Paramecium contractile vacuoles. J Ultrastruct Res 54:1–10

    Article  PubMed  CAS  Google Scholar 

  • Meier R, Reisser W, Wiessner W, Lefort-Tran M (1980) Freeze-fracture evidence of differences between membranes of perialgal and digestive vacuoles in Paramecium bursaria. Z Natur for sch 35c:1107–1110

    Google Scholar 

  • Meier R, Lefort-Tran M, Pouphile M, Reisser W, Wiessner W (1984) Comparative freezefracture study of perialgal and digestive vacuoles in Paramecium bursaria. J Cell Sci 71:121–140

    PubMed  CAS  Google Scholar 

  • Mogami Y, Takahashi K (1983) Calcium and microtubule sliding in ciliary axonemes isolated from Paramecium caudatum. J Cell Sci 61:107–121

    PubMed  CAS  Google Scholar 

  • Nilsson JR, Van Deurs B (1983) Coated pits and pinocytosis in Tetrahymena. J Cell Sci 63:209–222

    PubMed  CAS  Google Scholar 

  • Patterson DJ (1977) On the behaviour of contractile vacuoles and associated structures of Paramecium caudatum (Ehrbg). Protistologica 13:205–212

    Google Scholar 

  • Patterson DJ (1980) Contractile vacuoles and associated structures: their organization and function. Biol Rev 55:1–46

    Article  CAS  Google Scholar 

  • Patterson DJ (1981) On the origin of the postoral microtubules of Paramecium putrinum (Hymenostomatida, Ciliophora). Protistologica 17:525–531

    Google Scholar 

  • Perasso R, Beisson J (1978) Temporal pattern of mitochondrial multiplication during the cell cycle of Paramecium. Biol Cell 32:275–290

    Google Scholar 

  • Pitelka DR (1965) New observations on cortical ultrastructure in Paramecium. J Microsc 4:373–394

    Google Scholar 

  • Plattner H (1975) Ciliary granule plaques: membrane-intercalated particle aggregates associated with Ca2+-binding sites in Paramecium. J Cell Sci 18:257–269

    PubMed  CAS  Google Scholar 

  • Plattner H, Miller F, Bachmann L (1973) Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci 13:687–719

    PubMed  CAS  Google Scholar 

  • Plattner H, Westphal C, Tiggemann R (1982) Cytoskeleton-secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells. J Cell Biol 92:368–377

    Article  PubMed  CAS  Google Scholar 

  • Plattner H, Pape R, Haacke B, Olbricht K, Westphal C, Kersken H (1985) Synchronous exocytosis in Paramecium cells. VI. Ultrastructural analysis of membrane resealing and retrieval. J Cell Sci 77:1–17

    PubMed  CAS  Google Scholar 

  • Reisser W (1975) On the taxonomy of an auxotrophic Chlorella sp. isolated from Paramecium bursaria. Arch Microbiol 104:293–296

    Article  Google Scholar 

  • Sale WS, Satir P (1977) The termination of the central microtubules from the cilia of Tetrahymena pyriformis. Cell Biol Int Rep 1:45–49

    Article  PubMed  CAS  Google Scholar 

  • Satir B (1974) Membrane events during the secretory process. Symp Soc Exp Biol 28:399–418

    PubMed  CAS  Google Scholar 

  • Satir P (1968) Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol 39:77–94

    Article  PubMed  CAS  Google Scholar 

  • Selman GG, Jurand A (1970) Trichocyst development during the fission cycle of Paramecium. J Gen Microbiol 60:365–372

    Google Scholar 

  • Sibley JT, Hanson ED (1974) Identity and function of a subcortical cytoskeleton in Paramecium. Arch Protistenk 116:221–235

    Google Scholar 

  • Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96:1–27

    Article  PubMed  CAS  Google Scholar 

  • Stelly N, Balmefrezol M, Adoutte A (1975) Diaminobenzidine reactivity of mitochondria and peroxisomes in Tetrahymena and in wild-type and cytochrome oxidase-deficient Paramecium. J Histochem Cytochem 23:686–696

    Article  PubMed  CAS  Google Scholar 

  • Stevenson I (1972) Ultrastructure of nuclear division in Paramecium aurelia. III. Meiosis in the micronucleus during conjugation. Aust J Biol Sci 25:775–799

    PubMed  CAS  Google Scholar 

  • Stevenson I, Lloyd FP (1971) Ultrastructure of nuclear division in Paramecium aurelia. I. Mitosis in the micronucleus. Aust J Biol Sci 24:963–975

    PubMed  CAS  Google Scholar 

  • Sundararaman V, Cummings DJ (1976a) Morphological changes in aging cell lines of Paramecium aurelia. I. Alterations in the cytoplasm. Mech Age Dev 5:139–154

    Article  CAS  Google Scholar 

  • Sundararaman V, Cummings DJ (1976b) Morphological changes in aging cell lines of Paramecium aurelia. II. Macronuclear alterations. Mech Age Dev 5:325–338

    Article  CAS  Google Scholar 

  • Tamm SL (1972) Ciliary motion in Paramecium. A scanning electron microscope study. J Cell Biol 55:250–255

    Article  PubMed  CAS  Google Scholar 

  • Tucker JB, Beisson J, Roche DLJ, Cohen J (1980) Microtubules and control of macronuclear “amitosis” in Paramecium. J Cell Sci 44:135–151

    PubMed  CAS  Google Scholar 

  • Vivier E (1974) Morphology, taxonomy and general biology of the genus Paramecium. In: Van Wagtendonk WJ (ed) Paramecium. A current survey. Elsevier, Amsterdam London New York, pp 1–89

    Google Scholar 

  • Wasik A, Sikora J (1980) Effects of cytochalasin B and colchicine on cytoplasmic streaming in Paramecium bursaria. Acta Protozool 19:103–110

    CAS  Google Scholar 

  • Watanabe T (1981) Electron microscopy of cell surfaces of Paramecium caudatum stained with ruthenium red. Tissue Cell 13:1–7

    Article  PubMed  CAS  Google Scholar 

  • Weidner E, Sibley LD (1985) Phagocytized intracellular microsporidian blocks phagosome acidification and phagosome-lysosome fusion. J Protozool 32:311–317

    PubMed  CAS  Google Scholar 

  • Westcot DM, Fok AK, Allen RD (1985) Flow of membrane markers from the coated pits in Paramecium caudatum. J Cell Biol 101:52a

    Google Scholar 

  • Wichterman R (1953) The biology of Paramecium. Blakiston & McGraw-Hill, New York

    Google Scholar 

  • Wichterman R (1986) The biology of Paramecium, 2nd edn. Plenum, New York London

    Google Scholar 

  • Wilbert N, Heller G (1971) Der Feinbau der Mitochondrien von Tachysoma pellionella (Muller-Stein, 1859) (Ciliata, Hypotricha). Z Naturforsch 26b:1389

    Google Scholar 

  • Wolosewick JJ, Porter KR (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol 82:114–139

    Article  PubMed  CAS  Google Scholar 

  • Wyroba E (1981) Alveolar system of Paramecium. I. Trapping of polycationic dye as a result of membrane impairment. Acta Histochem 69:132–148

    PubMed  CAS  Google Scholar 

  • Wyroba E, Przelecka A (1973) Studies on the surface coat of Paramecium aurelia. I. Ruthenium red staining and enzyme treatment. Z Zellforsch 143:343–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allen, R.D. (1988). Cytology. In: Görtz, HD. (eds) Paramecium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73086-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73086-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73088-7

  • Online ISBN: 978-3-642-73086-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics