Paramecium pp 141-154 | Cite as

Organization and Expression of the Nuclear Genome

  • Manfred Freiburg

Abstract

During the last decade enormous progress was made in the investigation of the structure of the ciliate genome. Whereas for a long time ciliates have been thought to be rather burlesque relicts of evolution of interest only as an ecological niche for a few enthusiasts, they are now becoming more and more important for the research on basic mechanisms of the molecular biology of eukaryotic genes. Most of this progress was made on a few genera of ciliates: among the hypotrichs Oxytricha, Stylonychia and Euplotes and among the holotrichs essentially on Tetrahymena (see Gall 1984). Paramecium, most important in the past, seems to be somewhat ousted from the centre of interest in this field of research. Nevertheless, as it was demonstrated very recently by the discovery of its deviation in the usage of the “universal” genetic code, Paramecium and its molecular genetics remain most important for our understanding of the organization and evolution of eukaryotic genes.

Keywords

Cellulose Codon Immobilization Glutamine Gall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen S, Gibson I (1972) Genome amplification and gene expression in the ciliate macronucleus. Biochem Gen 6:293–313CrossRefGoogle Scholar
  2. Altschuler MI, Yao MC (1985) Macronuclear DNA of Tetrahymena thermophila exists as defined subchromosomal-sized molecules. Nucl Acids Res 13:5817–5831PubMedCrossRefGoogle Scholar
  3. Blackburn EH (1982) Characterization and species differences of rDNA: protozoans. In: Busch H, Rothblum L (eds) The cell nucleus, vol 10. Academic Press, London New York, pp 145–170Google Scholar
  4. Blackburn EH (1986) Structure and formation of telomeres in holotrichous ciliates. Int Rev Cytol 99:29–47CrossRefGoogle Scholar
  5. Blackburn EH, Szostak JW (1984) The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163–194PubMedCrossRefGoogle Scholar
  6. Boveri Th (1899) Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. Kupfer-Festschrift. Fischer, JenaGoogle Scholar
  7. Brunk CF (1986) Genome reorganization in Tetrahymena. Int Rev Cytol 99:49–83CrossRefGoogle Scholar
  8. Caron F (1986) Deviations from the “universal” genetic code. Microbiol Sci 3:36–40PubMedGoogle Scholar
  9. Caron F, Meyer E (1985) Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature (London) 314:185–188CrossRefGoogle Scholar
  10. Cockburn AF, Taylor WC, Firtel RA (1978) Dictyostelium rDNA consists of non-chromosomal palindromic dimers containing 5 S and 36 S coding regions. Chromosoma 70:19–29PubMedCrossRefGoogle Scholar
  11. Cullis CA (1972) The basis of cell-to-cell transformation in Paramecium bursaria. II. Investigation into the molecular nature of the transforming agent. J Cell Sci 11:611–619PubMedGoogle Scholar
  12. Cullis CA (1973) DNA amounts in the nuclei of Paramecium bursaria. Chromosoma 40:127–133PubMedCrossRefGoogle Scholar
  13. Cummings DJ (1972) Isolation and partial characterization of macro- and micronuclei from Paramecium aurelia. J Cell Biol 53:105–115PubMedCrossRefGoogle Scholar
  14. Cummings DJ (1975) Studies on macronuclear DNA from Paramecium aurelia. Chromosoma 53:191–208PubMedCrossRefGoogle Scholar
  15. Cummings DJ (1977) Methods for the isolation of nuclei from ciliated protozoans. In: Stein G, Stein J, Kleinsmith L (eds) Methods in cell physiology, vol 16. Academic Press, London New York, pp 97–112Google Scholar
  16. Cummings DJ, Tait A (1975) The isolation of nuclei from Paramecium aurelia. In: Prescott DM (ed) Methods in cell biology, vol 9. Academic Press, London New York, pp 281–309Google Scholar
  17. Cummings DJ, Tait A, Goddard JM (1974) Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 374:1–11PubMedGoogle Scholar
  18. David ET, Smith KE (1981) Preparation and partial characterization of cell-free proteinsynthesizing extracts from Tetrahymena pyriformis. Biochem J 194:761–770PubMedGoogle Scholar
  19. Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52:93–124PubMedCrossRefGoogle Scholar
  20. Engberg J, Andersson P, Leick V, Collins J (1976) Free ribosomal DNA molecules from Tetrahymena pyriformis GL are giant palindromes. J Mol Biol 104:455–470PubMedCrossRefGoogle Scholar
  21. Epstein LM, Forney JD (1984) Mendelian and non-Mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol Cell Biol 4:1583–1590PubMedGoogle Scholar
  22. Findley RC, Gall JG (1978) Free ribosomal RNA genes in Paramecium are tandemly repeated. Proc Natl Acad Sci USA 75:3312–3316CrossRefGoogle Scholar
  23. Findley RC, Gall JG (1980) Organization of ribosomal genes in Paramecium tetraurelia. J Cell Biol 84:547–559CrossRefGoogle Scholar
  24. Freiburg M (1985) Isolation and characterization of macronuclei of Paramecium caudatum infected with the macronucleus-specific bacterium Holospora obtusa. J Cell Sci 73:389–398PubMedGoogle Scholar
  25. Gall JG (1984) Ciliates come of age. Nature (London) 310:453–454CrossRefGoogle Scholar
  26. Gibson I, Martin N (1971) DNA amounts in the nuclei of Paramecium aurelia and Tetrahymena pyriformis. Chromosoma 35:374–382CrossRefGoogle Scholar
  27. Gibson I, Chance ML, Williams JM (1971) Extranuclear DNA and the endosymbionts of P. aurelia. Nature New Biol 234:75–77PubMedCrossRefGoogle Scholar
  28. Gorovsky MA (1980) Genome organization and reorganization in Tetrahymena. Annu Rev Genet 14:203–239PubMedCrossRefGoogle Scholar
  29. Hanyu N, Kuchino Y, Nishimura S, Beier H (1986) Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAsGln. EMBO J 5:1307–1311PubMedGoogle Scholar
  30. Helftenbein E (1985) Nucleotide sequence of a macronuclear DNA molecule coding for α-tubulin from the ciliate Stylonychia lemnae. Special codon usage: TAA is not a translation termination codon. Nucl Acids Res 13:415–433PubMedCrossRefGoogle Scholar
  31. Horowitz S, Gorovsky MA (1985) An unusual genetic code in nuclear genes of Tetrahymena. Proc Natl Acad Sci USA 82:2452–2455PubMedCrossRefGoogle Scholar
  32. Hruby DE, Maki RA, Cummings DJ (1977) Isolation and characterization of mRNA from Paramecium aurelia. Biochim Biophys Acta 477:89–96PubMedGoogle Scholar
  33. Isaacks RE, Santos BG (1973) Studies on nuclei of Paramecium aurelia. II. Amino acid composition and electrophoretic properties of the chromosomal basic proteins. J Protozool 20:482–489PubMedGoogle Scholar
  34. Karrer KM, Gall JG (1976) The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J Mol Biol 104:421–453PubMedCrossRefGoogle Scholar
  35. Katzen AL, Cann GM, Blackburn EH (1981) Sequence-specific fragmentation of macronuclear DNA in a holotrichous ciliate. Cell 24:313–320PubMedCrossRefGoogle Scholar
  36. Kraut H, Lipps HJ, Prescott DM (1986) The genome of hypotrichous ciliates. Int Rev Cytol 99:1–28PubMedCrossRefGoogle Scholar
  37. Kuchino Y, Hanyu N, Tashiro F, Nishimura S (1985) Tetrahymena thermophila glutamine tRNA and its gene that corresponds to UAA termination codon. Proc Natl Acad Sci USA 82:4758–4762PubMedCrossRefGoogle Scholar
  38. McGhee JH, Felsenfeld D (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156PubMedCrossRefGoogle Scholar
  39. McTavish C, Sommerville J (1980) Macronuclear DNA organization and transcription in Paramecium aurelia. Chromosoma 78:147–164PubMedCrossRefGoogle Scholar
  40. Meyer E, Caron F, Guiard B (1984) Blocking of in vitro translation of Paramecium messenger RNAs is due to messenger RNA primary structure. Biochimie 66:403–412PubMedCrossRefGoogle Scholar
  41. Meyer E, Caron F, Baroin A (1985) Macronuclear structure of the G surface antigen gene of Paramecium primaurelia and direct expression of its repeated epitopes in Escherichia coli. Mol Cell Biol 5:2414–2422PubMedGoogle Scholar
  42. Nanney DL (1980) Experimental ciliatology. An introduction to genetic and developmental analysis in ciliates. Wiley & Sons, New YorkGoogle Scholar
  43. Pasternak J (1967) Differential genic activity in Paramecium aurelia. J Exp Zool 165:395–418PubMedCrossRefGoogle Scholar
  44. Prat A, Katinka M, Caron F, Meyer E (1986) Nucleotide sequence of the Paramecium primaurelia G surface protein. A huge protein with a highly periodic structure. J Mol Biol 189:47–60PubMedCrossRefGoogle Scholar
  45. Preer JR, Jr, Preer LB (1979) The size of macronuclear DNA and its relationship to models for maintaining genic balance. J Protozool 26:14–18Google Scholar
  46. Preer JR, Jr, Preer LB, Rudman BM (1981) mRNAs for the immobilization antigens of Paramecium. Proc Natl Acad Sci USA 78:6776–6778PubMedCrossRefGoogle Scholar
  47. Preer JR, Jr, Preer LB, Rudman BM, Barnett AJ (1985) Deviation from the universal code shown by the gene for surface protein 51 A in Paramecium. Nature (London) 314:188–190CrossRefGoogle Scholar
  48. Prince DJ, Cummings DJ, Seale RL (1977) Analysis of chromatin repeat units in logarithmically and stationary growing cells of Paramecium aurelia and Tetrahymena pyriformis. Biochem Biophys Res Commun 79:190–197PubMedCrossRefGoogle Scholar
  49. Rao MVN, Prescott DM (1967) Micronuclear RNA synthesis in Paramecium caudatum. J Cell Biol 33:281–285CrossRefGoogle Scholar
  50. Raikov IB (1982) The protozoan nucleus. Morphology and evolution. Springer, Berlin Heidelberg New YorkGoogle Scholar
  51. Razin A, Szyf M (1984) DNA methylation patterns. Formation and function. Biochim Biophys Acta 782:331–342PubMedGoogle Scholar
  52. Samuel C, Mackie J, Sommerville J (1981) Macronuclear chromatin organization in Paramecium primaurelia. Chromosoma 83:481–492PubMedCrossRefGoogle Scholar
  53. Schwartz V, Meister H (1975) Die Extinktion der feulgengefärbten Makronucleusanlage von Paramecium bursaria in der DNS-armen Phase. Arch Protistenk 117:60–64Google Scholar
  54. Shiomi Y, Higashinakagawa T, Saiga H, Mita T (1980) Metrizamide isopycnic centrifugation for the isolation of macro- and micronuclei from Paramecium. J UOEH 2:323–330Google Scholar
  55. Skoczylas B, Soldo AT (1975) Separation and purification of macronuclei from macronuclear fragments and micronuclei in the ciliate Paramecium aurelia. Exp Cell Res 90:143–152PubMedCrossRefGoogle Scholar
  56. Soldo AT, Godoy GA (1972) The kinetic complexity of Paramecium macronuclear deoxyribonucleic acid. J Protozool 19:673–678PubMedGoogle Scholar
  57. Soldo AT, Brickson SA, Larin F (1981) The kinetic and analytical complexities of the DNA genomes of certain marine and fresh-water ciliates. J Protozool 28:377–383Google Scholar
  58. Sommerville J, McTavish C (1982) The effect of temperature change on gene expression in Paramecium primaurelia. Biochim Biophys Acta 698:158–166PubMedGoogle Scholar
  59. Sonneborn TM (1974) Paramecium aurelia. In: King RC (ed) Handbook of genetics, vol 2. Plenum, New York, pp 469–594Google Scholar
  60. Steinbrück G (1986) Molecular reorganization during nuclear differentiation in ciliates. In: Hennig W (ed) Results and problems in cell differentiation, vol 13. Springer, Berlin Heidelberg New York Tokyo, pp 105–174Google Scholar
  61. Steinbrück G, Haas I, Hellmer K-H, Ammermann D (1981) Characterization of macronuclear DNA in five species of ciliates. Chromosoma 83:199–208PubMedCrossRefGoogle Scholar
  62. Stevenson I (1967) A method for the isolation of macronuclei from Paramecium aurelia. J Protozool 14:412–414PubMedGoogle Scholar
  63. Tait A, Cummings DJ (1975) DNA-dependent DNA polymerase activities from Paramecia macronuclei. Biochim Biophys Acta 378:282–295PubMedGoogle Scholar
  64. Vogt VM, Braun R (1976) Structure of ribosomal DNA in Physarum polycephalum. J Mol Biol 106:567–587PubMedCrossRefGoogle Scholar
  65. Yao MC, Gall JG (1977) A single integrated gene for ribosomal RNA in a eucaryote, Tetrahymena pyriformis. Cell 12:121–132PubMedCrossRefGoogle Scholar
  66. Yao MC, Yao CH (1981) Repeated hexanucleotide C-C-C-C-A-A is present near free ends of macronuclear DNA of Tetrahymena. Proc Natl Acad Sci USA 78:7436–7439PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Manfred Freiburg
    • 1
  1. 1.Zoologisches Institut der Westfälischen Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations