Carbon Sources for the In-Vivo Nitrate Reductase Activity in Azospirillum Brasilense Cells

  • Lakshmi Sadasivan
  • Carlos A. Neyra
Conference paper

Summary

Carbon sources representative of various entry pathways of carbon metabolism viz. fructose, gluconate, glucose and TCA cycle intermediates were used as energy sources to study the invivo nitrate reductase activity in whole cells of A brasilense ATCC 29145. Enzyme activity was linear when using cells grown and immediately assayed using nutrient broth. Organic acids such as malate, succinate, pyruvate, and gluconate were all effective as sources of energy for the reduction of nitrate to nitrite under aerobic conditions. Among the carbohydrates, glucose and sucrose could not support nitrate reduction, while fructose was able to supply energy after a lag of 10–20 minutes. This lag was also observed when using organic acids.

Most interesting was the observation that A brasilense cells were able to metabolize and used α-Ketoglutarate (α-KG) as an external source of energy for nitrate reduction. The use of α -KG as energy source by the A brasilense cells was confirmed by the uptake studies using radioactively labelled C14 α -KG. The cells did not grow in semi-solid nitrogen-free medium containing α -KG as sole carbon source but limited growth in liquid medium was observed with fixed nitrogen sources.

Keywords

Nitrate reduction nitrate reductase activity carbon metabolism A. brasilense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asian:, M. and Oaks, A. (1975). Plant Physiol. 56,634–639.CrossRefGoogle Scholar
  2. 2.
    Bothe, H., Klein, B., Stephan, M.P., and Dobereiner, J. (1981). Arch. Microbiol. 130, 96–100.CrossRefGoogle Scholar
  3. 3.
    Burke, K.A. and Lascelles, J. (1975). J. Bacteriol. 123, 308–316.PubMedGoogle Scholar
  4. 4.
    Gardiol, A., Arias, A., Cervenansky, C., Gaggero, G., and Martinez-Drets, G. (1980). J. Bacteriol. 144, 12–16.PubMedGoogle Scholar
  5. 5.
    Goebel, E.M., and Kreig, N.R. (1984). J. Bacteriol. 159, 86–92.PubMedGoogle Scholar
  6. 6.
    Hanisch Jen Cate, C.H. and Bretler, H. (1981). Physiol. Plant. 52, 129–135.CrossRefGoogle Scholar
  7. 7.
    Hartman, A., Fu, H.-A., Song, S.-D., and Burris, R.H. (1985). In: Klingmuller, W. (ed.): Azospirillum III: Genetics, Physiology Ecology Springer Verlag, Heidelberg, p. 116–126.CrossRefGoogle Scholar
  8. 8.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951). J. Biol. chem. 193, 265–275.Google Scholar
  9. 9.
    Magalhaes, L.M.S., Neyra, V.A.,and Dobereiner, J. (1978). Arch. Microbiol. 117, 247–252.PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez-Drets, G., del Gallo, M., Burpee, C., and Burris, R.H. (1984). J. Bacteriol. 159, 80–85.PubMedGoogle Scholar
  11. 11.
    Nelson, L.M. and Knowles, R. (1978). Can. J. Microbiol. 24, 1395–1403.PubMedCrossRefGoogle Scholar
  12. 12.
    Neuer, G., Kronenberg, A., and Bothe, H. (1985). Arch. Microbiol. 121, 364–370.CrossRefGoogle Scholar
  13. 13.
    Neyra, C.A., Dobereiner, J., Lalande, R.,and Knowles, R. (1977). Can. J. Microbiol. 3, 300–305.CrossRefGoogle Scholar
  14. 14.
    Neyra, C.A. and Van Berkum, P. (1977). Can. J. Microbiol. 23, 306–310.PubMedCrossRefGoogle Scholar
  15. 15.
    Okon, Y.S., Albrecht, S.L., and Burris, R.H. (1976). J. Bacteriol. 128, 592–597.PubMedGoogle Scholar
  16. 16.
    Penteado, S.M., Zimmer, W., and Bothe, H.. (1984). Arch. Microbiol. 138, 212–216.CrossRefGoogle Scholar
  17. 17.
    Puranik, R.M. and Srivastava, H.S. (1983). Biochem. Physiol. Pflanz. 178, 131–135.Google Scholar
  18. 18.
    Puranik, R.M. and Srivastava, H.S. (1983). Biochem. 22, 2383–2387.Google Scholar
  19. 19.
    Ray Dutta, A.K. and Mishra, A.K. (1985). Curr. Sci. 54, 637–640.Google Scholar
  20. 20.
    Sadasivan, L., and Neyra, C.A. (1985). J. Bacteriol. 163, 716–723.PubMedGoogle Scholar
  21. 22.
    Srivastava, H.S. (1971). Indian J. Bioehem. Biophys. 11, 230–232.Google Scholar
  22. 23.
    Srivastava, H.S. (1980). Phytoehemistry. 11, 725–733.CrossRefGoogle Scholar
  23. 24.
    Westby, S.A., Cutshall, D.S., and Vigil, G.V. (1983). J. Baeteriol. 156, 1369–1372.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Lakshmi Sadasivan
    • 1
  • Carlos A. Neyra
    • 1
  1. 1.Department of Biochemistry and Microbiology, Cook CollegeRutgers UniversityNew BrunswickCanada

Personalised recommendations