Unexploited Dimensions of Optimization Life History Theory

  • E. Pásztor


Darwin’s theory of evolution was not a genetic theory; it could not be that. The idea that a comprehensive theory of evolution must be genetic was a new and strong paradigm of the synthetic theory only. As the synthetic theory dominated so strongly, those evolutionary biologists who do not follow a genetic approach (e.g. Oster and Wilson 1978) should give better arguments for their point of view. I am a heretic of this kind, too, and I would like to show that it is possible to explore some unexploited dimensions of life history theory by the optimization method and that a non-genetic but systematic approach can have some consequences for the general theory of evolution.


Life History Life History Trait Clutch Size Fitness Component Juvenile Survival 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin JD, Dingle H (1986) Geographic variation in the effects of life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69:64–71CrossRefGoogle Scholar
  2. Charlesworth B (1973) Selection in populations with overlapping generations. IV. Natural selection and life histories. Am Nat 107:303–311CrossRefGoogle Scholar
  3. Charlesworth B (1980) Evolution in age structured populations. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. Charnov EL, Krebs JR (1973) On clutch size and fitness. Ibis 116:217–219CrossRefGoogle Scholar
  5. Charnov EL, Schaffer WM (1973) Life history consequences of natural selection: Cole’s result revisited. Am Nat 107:791–793CrossRefGoogle Scholar
  6. Cheverud JM, Rutledge JJ, Atchley WR (1983) Quantitative genetics of development: genetic correlations of age-specific trait values and the evolution of ontogeny. Evolution 37:895–905CrossRefGoogle Scholar
  7. Christiansen FB (1984) The definition and measurement of fitness. In: Schorrocks B (ed) Evolutionary ecology. 23rd Symp Br Ecol Soc, Leeds 1982. Blackwell, Oxford LondonGoogle Scholar
  8. Christiansen FB, Fenchel TM (1979) Evolution of marine invertebrate reproductive patterns. Theor Popul Biol 16:267–282CrossRefPubMedGoogle Scholar
  9. Cody ML (1966) A general theory of clutch size. Evolution 20:174–184CrossRefGoogle Scholar
  10. de Jong G (1984) Selection and numbers in models of life histories. In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin Heidelberg New York, pp 87–102CrossRefGoogle Scholar
  11. Endler JA (1986) Natural selection in the wild. Princeton Univ PressGoogle Scholar
  12. Falconer DS (1981) Introduction to quantitative genetics. Longman, London New YorkGoogle Scholar
  13. Fisher RA (1930) The genetical theory of natural selection. Clarendon, OxfordGoogle Scholar
  14. Gadgil M, Bossert WM (1970) Life historical consequences of natural selection. Am Nat 104:1–24CrossRefGoogle Scholar
  15. Goodman D (1974) Natural selection and a cost-ceiling on reproductive effort. Am Nat 108: 247–268CrossRefGoogle Scholar
  16. Goodman D (1979) Regulating reproductive effort in a changing environment. Am Nat 113: 735–748CrossRefGoogle Scholar
  17. Goodman D (1982) Optimal life-histories, optimal notation and the value of reproductive value. Am Nat 108:247–268CrossRefGoogle Scholar
  18. Gould SJ, Lewontin RC (1979) The spandlers of San Marco and the panglossian paradigm: a critic of the adaptationist programme. Proc R Soc London Ser B 205:581–598CrossRefGoogle Scholar
  19. Harper JL (1974) A Darwinian approach to plant ecology. J Ecol 55:247–270Google Scholar
  20. Juhász Nagy P (1970) Egy operativ ökológia hiánya és sziikséglete. MTA Biol Oszt Közl 12:441 – 464Google Scholar
  21. Lack D (1947) The significance of clutch size. I. Ibis 89:302–352CrossRefGoogle Scholar
  22. Lack D (1954) The natural regulation of animal numbers. Oxford Univ PressGoogle Scholar
  23. Levins R (1962) Theory of fitness in a heterogenous environment I. The fitness set and adaptive function. Am Nat 96:361–373CrossRefGoogle Scholar
  24. Levins R (1968) Evolution in changing environment. Princeton Univ PressGoogle Scholar
  25. MacArthur RH (1962) Some generalized theorems of natural selection. Proc Natl Acad Sci USA 48:1893–1897CrossRefPubMedGoogle Scholar
  26. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Univ PressGoogle Scholar
  27. Maynard Smith J, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287CrossRefGoogle Scholar
  28. Meszéna G, Pásztor E (1986) Denzitásfüggö életmenet stratégiák 1. A termékenység és a fiatalkori halálozás denzitásfüggésének vizsgálata. Abstr Bot 10:97–116Google Scholar
  29. Michod RE (1979) Evolution of life-histories in response to age-specific mortality factors. Am Nat 113:531–550CrossRefGoogle Scholar
  30. Mills CA, Eloranta A (1985) Reproductive strategies in the stone loach Noemacheilus barbatulus. Oikos 44:341–349CrossRefGoogle Scholar
  31. Murphy GI (1968) Pattern in life history and the environment. Am Nat 102:390–404CrossRefGoogle Scholar
  32. Noordwijk AJ van (1984) Quantitative genetics in natural populations of birds, illustrated with examples from the great tit, Parus major. In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin Heidelberg New York, pp 67–83CrossRefGoogle Scholar
  33. Oster GF, Wilson EO (1978) Caste and ecology of social insects. Princeton Univ PressGoogle Scholar
  34. Pásztor E (1986) Levél a populációbiológiäról. Módszer-Elmélet-Tudomâny Világosság 27:92–100Google Scholar
  35. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597CrossRefGoogle Scholar
  36. Pritts MP, Hanckok JF (1983) Seasonal and life time allocation patterns in the woody goldenrod Solidago pauciflosculosa Michaux. (Compositae) Am J Bot 70:216–221CrossRefGoogle Scholar
  37. Prout T (1980) Some relationships between density-independent selection and density-dependent population growth. Evol Biol 13:1–68Google Scholar
  38. Reznick D (1985) Cost of reproduction: an evaluation of the empirical evidence. Oikos 44:257 – 267CrossRefGoogle Scholar
  39. Ricklefs RE (1980) Geographical variation in clutch size among passerine birds: Ashmole’s hypothesis Auk 97:38–49Google Scholar
  40. Ricklefs RE (1983) Comparative avian demography. In: Johnston RF (ed) Current ornithology, vol 1. Plenum, New York Lodon, pp 1–32Google Scholar
  41. Rose MA (1983) Theories of life-history evolution. Am Zool 23:15–23Google Scholar
  42. Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108: 783–790CrossRefGoogle Scholar
  43. Schaffer WM (1983) The application of optimal control theory to the general life history problem. Am Nat 121:418–431CrossRefGoogle Scholar
  44. Schaffer WM, Gadgil MD (1974) Selection for optimal life histories in plants. In: Cody ML, Diamond J (eds) The ecology and evolution of communities. Harvard Univ Press, Cambridge, Mass, pp 142–157Google Scholar
  45. Sibly R, Calow P (1983) An integrated approach to life-cycle evolution using selective landscapes. J Theor Biol 102:527–547CrossRefGoogle Scholar
  46. Sibly R, Calow P, Nichols N (1985) Are patterns of growth adaptive? J Theor Biol 112:553–574CrossRefPubMedGoogle Scholar
  47. Skutch AF (1949) Do tropical-birds rear as many young as they can nourish? Ibis 91:430–455CrossRefGoogle Scholar
  48. Skutch AF (1967) Adaptive limitation of the reproductive rate of birds. Ibis 109:579–599CrossRefGoogle Scholar
  49. Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47CrossRefPubMedGoogle Scholar
  50. Stearns SC (1977) The evolution of life history traits: a critic of the theory and a review of the data. Annu Rev Ecol Syst 8:145–171CrossRefGoogle Scholar
  51. Stearns SC (1982) The role of development in the evolution of life histories. In: Bonner JT (ed) Evolution and development. Springer, Berlin Heidelberg New York, pp 237–259Google Scholar
  52. Stearns SC (1984) How much of the phenotype is necessary to understand evolution at the level of the gene? In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin Heidelberg New York, pp 31–49CrossRefGoogle Scholar
  53. Taylor HM, Goureey RS, Lawrence CF, Kaplan RS (1974) Natural selection of life history attributes: an analytical approach. Theor Popul Biol 5:104–122CrossRefPubMedGoogle Scholar
  54. Thompson K, Stewart AJA (1981) The measurement and meaning of reproductive effort in plants. Am Nat 117:205–211CrossRefGoogle Scholar
  55. Tinkle DW (1969) The concept of reproductive effort and its relation to the evolution of life histories in lizards. Am Nat 103:501–516CrossRefGoogle Scholar
  56. Williams GC (1966) Adaptation and natural selection. Princeton Univ PressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. Pásztor
    • 1
  1. 1.Department of GeneticsEötvös Loránd UniversityBudapestHungary

Personalised recommendations