The Evolutionary Potential of the Unstable Genome

  • A. Fontdevila

Abstract

The eukaryotic genome contains a large fraction of repetitive DNA, which is considered of primary importance for the expression of genetic information. Most of the moderately repetitive DNA is dispersed in the genome. In Drosophila melanogaster it has been estimated that disperse, middle repetitive DNA represents about 12% of its whole genomic DNA. At least, a minimum of 50 different families belonging mainly to three classes (copia, P and foldback) have been characterized so far (Rubin 1983). The degree of repetition varies among families but it may be estimated between 30 and 50 and the maximum copy number seems to be under control (Syvanen 1984).

Keywords

Migration Maize Recombination Argentina Weinstein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander ML, Lea RB, Stone WS (1952) Interspecific gene variability in the virilis group. Texas UnivPubl 5204:106–113Google Scholar
  2. Bregliano JC, Kidwell MG (1983) Hybrid dysgenesis determinants. In: Shapiro (ed) Mobile genetic elements. Academic Press, London New York, pp 363–410Google Scholar
  3. Burns JA, Gerstel DU (1969) Consequences of spontaneous breakage of heterochromatic segments in Nicotiana hybrids. Genetics 63:427–439PubMedGoogle Scholar
  4. Burns JA, Gerstel DU (1972) Inhibition of chromosome breakage and of megachromosomes by intact genomes of Nicotiana. Genetics 69:211–220Google Scholar
  5. Burns JA, Gerstel DU (1973) Formation of megachromosomes from heterochromatic blocks of Nicotiana tomentosiformis. Genetics 75:497–502PubMedGoogle Scholar
  6. Campuzano S, Balcells L, Villares R, Carramolino L, Gareia-Alonso L, Modolell J (1986) Excess function Hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila. Cell 44:303–312CrossRefPubMedGoogle Scholar
  7. Carson HL (1982) Speciation as a major reorganization of polygenic balances. In: Barigozzi C (ed) Mechanisms of speciation. Liss, New York, pp 411–433 (Proc Int Meet Mechanisms of speciation)Google Scholar
  8. Coyne JA (1984) Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proc Natl Acad Sci USA 81:4444–4447CrossRefPubMedGoogle Scholar
  9. Daniels SB, Strausbaugh LD (1986) The distribution of P element sequences in Drosophila: the willistoni and saltans species groups. J Mol Evol 23:138–148CrossRefPubMedGoogle Scholar
  10. Daniels SB, Strausbaugh LD, Ehrman L, Armstrong R (1984) Sequences homologous to P elements occur in Drosophila paulistorum. Proc Natl Acad Sci USA 81:6794–6797CrossRefPubMedGoogle Scholar
  11. Dayal N (1979) Cytogenetic studies in the inbred lines of radish (Raphanus sativus L. var. radicok pers.) and their hybrids. III. Meiotic abnormalities. Cytologia 44:1–5CrossRefGoogle Scholar
  12. Dobzahnsky Th (1934) Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z Zellforsch Mikrosk Anat 21:169–223CrossRefGoogle Scholar
  13. Dobzahnsky Th (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135Google Scholar
  14. Dover GA, Doolittle RF (1980) Modes of genome evolution. Nature (London) 288:646CrossRefGoogle Scholar
  15. Dowsett AP, Young MW (1982) Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc Natl Acad Sci USA 79:4570–4574CrossRefPubMedGoogle Scholar
  16. Engels WR (1983) The P family of transposable elements in Drosophila. Annu Rev Genet 17: 315–344CrossRefPubMedGoogle Scholar
  17. Engels WR, Preston CR (1979) Hybrid dysgenesis in Drosophila melanogaster: the biology of male and female sterility. Genetics 92:161–174PubMedGoogle Scholar
  18. Engels WR, Preston CR (1984) Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107:657–678PubMedGoogle Scholar
  19. Evgenev MB, Yenikolopov GN, Peunova NI, Ilyin V (1982) Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma (Berlin) 85:375–386CrossRefGoogle Scholar
  20. Finnegan DJ (1983) Transposable elements in eukaryotes. Int Rev Cytol 93:281–326CrossRefGoogle Scholar
  21. Flavell RB (1982) Sequence amplification, deletion and rearrangement: major sources of variation during species divergence. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London New York, pp 301–323Google Scholar
  22. Flavell RB (1984) Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature (London) 310:514–516CrossRefGoogle Scholar
  23. Gerstel DU, Burns JA (1967) Phenotypic and chromosomal abnormalities associated with the introduction of heterochromatin from Nicotiana otophora into N. tabacum. Genetics 56: 483–502PubMedGoogle Scholar
  24. Gerstel DU, Bums JA (1972) On the absence of cytoplasmic determination of the formation of megachromasomes in Nicotiana. J Heredity 63:256–258Google Scholar
  25. Hennig W (1985) Y chromosome function and spermatogenesis in Drosophila hydei. In: Caspari EW, Scandalios JG (eds) Advances in genetics, vol 23. Academic Press, London New York, pp 179–234CrossRefGoogle Scholar
  26. Kerkis J (1933) Development of gonads in hybrids between Drosophila melanogaster and D. simulons. J Exp Zool 66:477–509CrossRefGoogle Scholar
  27. Kidwell MG (1983) Evolution and hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci USA 80:1655–1659CrossRefPubMedGoogle Scholar
  28. Kidwell MG, Novy JB (1979) Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the P-M system. Genetics 92:1127–1140PubMedGoogle Scholar
  29. Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis inDrosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833PubMedGoogle Scholar
  30. Lande R (1985) The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54:323–332CrossRefPubMedGoogle Scholar
  31. Lansman RA, Stacey SN, Grigliatti TA, Brock HW (1985) Sequences homologous to the P mobile element of Drosophila melanogaster are widely distributed in the subgenus Sophophora. Nature (London) 318:561–563CrossRefGoogle Scholar
  32. Laski FA, Rio DC, Rubin GM (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44:7–19CrossRefPubMedGoogle Scholar
  33. Levis R, O’Hare K, Rubin G (1984) Effects of transposible element insertions on RNA encoded by the white gene of Drosophila. Cell 38:471–481CrossRefPubMedGoogle Scholar
  34. Lewin R (1983) Origin of species in stressed environments. Science 222:1112CrossRefPubMedGoogle Scholar
  35. Mackay TFC (1985) Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111:351–374PubMedGoogle Scholar
  36. Mainland GB (1942) Genetic relationships in the Drosophila funebris group. Univ Texas Publ 4228:74–112Google Scholar
  37. Martin G, Wiernasz D, Schedl P (1983) Evolution of Drosophila repetitive dispersed DNA. J Mol Evol 19:203–213CrossRefPubMedGoogle Scholar
  38. Mayr E (1982) Processes of speciation in animals. In: Barigozzi C (ed) Mechanisms of speciation. Liss, New York, pp 1–19Google Scholar
  39. McClintock B (1951) Chromosome organization and genetic expression. Cold Spring Harbor Sym Quant Biol 16:13–47Google Scholar
  40. McDonald JF, Strand DJ, Lambert ME, Weinstein IB (1986) The responsive genome: evidence and evolutionary implications. In: Rauff R, Rauff E (eds) Development as an evolutionary process. Liss, New YorkGoogle Scholar
  41. Miller DW, Miller LK (1982) A virus mutant with an insertion of a copia-like transposable element. Nature (London) 299:562–564CrossRefGoogle Scholar
  42. Modolell J, Bender W, Meselson M (1983) Drosophila melanogaster mutations suppressive by the suppressor of hairy-wing are insertions of a 7.3 kilobase mobile element. Proc Natl Acad Sci USA 80:1678–1682CrossRefPubMedGoogle Scholar
  43. Muller HJ, Pontecorvo G (1940) Recombinants between Drosophila species the Fl hybrids of which are sterile. Nature (London) 146:199–200CrossRefGoogle Scholar
  44. Muller HJ, Pontecorvo G (1941) Recessive genes causing interspecific sterility and other disharmonies between D. melanogaster and D. simulons. Genetics 27:157Google Scholar
  45. Naveira H (1985) Base genética de las barreras de aislamiento reproductivo en el cluster buzzatii de Drosophila. PhD Thesis, Univ Autónoma Barcelona, SpainGoogle Scholar
  46. Naveira H, Fontdevila A (1985) The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chro-mosoma (Berlin) 91:87–94CrossRefGoogle Scholar
  47. Naveira H, Fontdevila A (1986) The evolutionary history of Drosophila buzzatii. XII. The genetic basis of sterility in hybrids between D. buzzatii and its siblingD. serido from Argentina. Genetics 114:841–857PubMedGoogle Scholar
  48. Naveira H, Hauschteck-Jungen E, Fontdevila A (1984) Spermiogenesis of inversion heterozygotes in back cross hybrids between Drosophila buzzatii and D. serido. Genetica 65:205–214CrossRefGoogle Scholar
  49. Naveira H, Plá C, Fontdevila A (1986) The evolutionary history of D. buzzatii. XI. A new method for cytogenetic localization based on asynapsis of polytene chromosomes in interspecific hybrids of Drosophila. Genetica 71:199–212CrossRefGoogle Scholar
  50. Orgel LE, Crick FHC, Sapienza C (1980) Selfish DNA. Nature (London) 288:645–646CrossRefGoogle Scholar
  51. Parkhurst SM, Corces V (1986) Interactions among the gypsy transposable element and the yellow and the supressor of hairy-wing loci in Drosophila melanogaster. Mol Cell Biol 6:47–53PubMedGoogle Scholar
  52. Pasyukova EG, Belayeva ESP, Kogan GL, Zaidanov LZ, Gvozdev VA (1986) Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol Biol Evol 3(4):299–312PubMedGoogle Scholar
  53. Picard G, Bregliano JC, Bucheton A, Lavige JM, Pelisson A, Kidwell MG (1978) Non-Mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster. Genet Res 32:275–287CrossRefPubMedGoogle Scholar
  54. Pontecorvo G (1943) Hybrid sterility in artificially produced recombinants between Drosophila melanogaster and Drosophila simulons. Proc R Soc Edinburgh Ser B 61:385–397Google Scholar
  55. Roeder GS, Fink GR (1983) Transposable elements in yeast. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, London New York, pp 299–328Google Scholar
  56. Rubin GM (1983) Dispersed repetitive DNAs in Drosophila. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, London New York, pp 329–361Google Scholar
  57. Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29:987–994CrossRefPubMedGoogle Scholar
  58. Ruiz A, Fontdevilla A (1985) The evolutionary history of Drosophila buzzatii. VI. Adaptive chromosomal changes in experimental populations with natural substrates. Genetica 66:63–71CrossRefGoogle Scholar
  59. Sage RD, Seiander RK (1979) Hybridization between species of the Rana pipiens complex in central Texas. Evolution 33:1069–1088CrossRefGoogle Scholar
  60. Schäffer U (1978) Sterility in Drosophila hydei X D. neohydei hybrids. Genetica 49:205–214CrossRefGoogle Scholar
  61. Somerson NL, Ehrman L, Kocka JP, Gottlieb FJ (1984) Streptococcal L-forms isolated from Drosophila paulistorum semispecies cause sterility in male progeny. Proc Natl Acad Sci USA 81:282–285CrossRefPubMedGoogle Scholar
  62. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347CrossRefPubMedGoogle Scholar
  63. Stone WS (1947) Gene replacement in the virilis group. Univ Texas Publ 4720:161–166Google Scholar
  64. Strand DJ, McDonald JF (1985) Copia is transcriptionally responsive to environmental stress. Nucl Acids Res 13:4401–4410CrossRefPubMedGoogle Scholar
  65. Sturtevant AH (1939) High mutation frequency induced by hybridization. Proc Natl Acad Sci USA 25:308–310CrossRefPubMedGoogle Scholar
  66. Syvanen M (1984) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18:271–293CrossRefPubMedGoogle Scholar
  67. Syvanen M (1986) Cross-species gene transfer: a major factor in evolution? Trends Genet:63–66Google Scholar
  68. Templeton AR (1981) Mechanisms of speciation. A population genetic approach. Annu Rev Ecol Syst 12:23–48CrossRefGoogle Scholar
  69. Todaro GJ, Callahan R, Rapp VR, de Larco JE (1980) Genetic transmission of retroviral genes and cellular oncogenes. Proc R Soc London Ser B 210:367–385CrossRefGoogle Scholar
  70. Walters MS (1952) Spontaneous chromosome breakage and atypical chromosome movement in meiosis of the hybrid Bromus marginatus X B. pseudolaevipes. Genetics 37:8–25PubMedGoogle Scholar
  71. Woodruff RC, Slatko BE, Thompson JN Jr (1983) Factors affecting mutation rate in natural populations. In: Ashburner M, Carson HL, Thompson JN, Jr (eds) The genetics and biology of Drosophila, vol 3c. Academic Press, London New York, pp 37–124Google Scholar
  72. Wright S (1940) Breeding structure of populations in relation to speciation. Am Nat 74:232–248CrossRefGoogle Scholar
  73. Wright S (1969) Evolution and the genetics of populations, vol 2. The theory of gene frequencies. Univ Chicago PressGoogle Scholar
  74. Wu CI, Beckenbach AT (1983) Evidence for extensive genetic differentiation between the sex-ratio and the standard arrangement of Drosophila pseudoobscura and Drosophila persimilis, and identification of hybrid sterility factors. Genetics 105:71–86PubMedGoogle Scholar
  75. Young MW, Schwartz HE (1981) Nomadic gene families in Drosophila. Cold Spring Harbor Symp Quant Biol 45:629–640PubMedGoogle Scholar
  76. Zouros E (1981) The chromosomal basis of sexual isolation in two sibling species of Drosophila: D. arizonensis and D. mojavensis. Genetics 97:703–718PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Fontdevila
    • 1
  1. 1.Departamento de Genética y MicrobiologiaUniversidad Autónoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations